Processing math: 100%


SOLUTION 2: Draw a rectangle with length x and width y, and assume each edge of the rectangle is a function of time t.

tex2html_wrap_inline125



     a.) The perimeter of the rectangle is P=x+x+y+y     P=2x+2y GIVEN:    dxdt=4 ft/min.  and  dydt=3 ft/min.

FIND:    dPdt when x=8 ft. and y=5 ft.

Now differentiate the perimeter equation with respect to time t getting

D{P}=D{2x+2y}    dPdt=2dxdt+2dydt   

( Now let dxdt=4 and  dydt=3.)

dPdt=2(4)+2(3)=2 ft/min.

     b.) The area of the rectangle is A=(length)(width)     A=xy GIVEN:    dxdt=4 ft/min. and dydt=3 ft/min.

FIND:    dAdt when x=8 ft. and y=5 ft.

Now differentiate the area equation with repect to time t using the product rule getting

D{A}=D{xy}    dAdt=xdydt+dxdty   

( Now let dxdt=4 ,  dydt=3,x=8, and y=5.)

dAdt=(8)(3)+(4)(5)=4 ft2/min.

Click HERE to return to the list of problems.