Processing math: 100%
SOLUTION 2: Draw a rectangle with length x and width y, and assume each edge of the rectangle is a function of time t.
a.) The perimeter of the rectangle is
P=x+x+y+y ⟶
P=2x+2y
GIVEN: dxdt=4 ft/min. and dydt=−3 ft/min.
FIND: dPdt when x=8 ft. and y=5 ft.
Now differentiate the perimeter equation with respect to time t getting
D{P}=D{2x+2y} ⟶
dPdt=2dxdt+2dydt ⟶
( Now let dxdt=4 and dydt=−3.)
dPdt=2(4)+2(−3)=2 ft/min.
b.) The area of the rectangle is
A=(length)(width) ⟶
A=xy
GIVEN: dxdt=4 ft/min. and dydt=−3 ft/min.
FIND: dAdt when x=8 ft. and y=5 ft.
Now differentiate the area equation with repect to time t using the product rule getting
D{A}=D{xy} ⟶
dAdt=xdydt+dxdty ⟶
( Now let dxdt=4 , dydt=−3,x=8, and y=5.)
dAdt=(8)(−3)+(4)(5)=−4 ft2/min.
Click HERE to return to the list of problems.