SOLUTION 11: Draw a sphere of radius $r$, and assume that $r$ is a function of time $t$.

tex2html_wrap_inline125


The volume of a sphere of radius $r$ is $$ V = \displaystyle{ 4 \over 3 } \pi r^3 $$

The surface area of a sphere of radius $r$ is

$$ S=4 \pi r^2 $$

GIVEN: $ \ \ \ \displaystyle{ dV \over dt } = 64 \pi \ meters^3/hr. $

FIND: $ \ \ \ \displaystyle{ dS \over dt } $ when $ r=2 \ m. $

Now differentiate the volume equation with respect to time $t$, getting

$$ D \{ V \} = D \{ \displaystyle{ 4 \over 3 } \pi r^3 \} \ \ \ \longrightarrow $$ $$ \displaystyle{ dV \over dt } = \displaystyle{ 4 \over 3 } \pi \cdot 3 r^2 \displaystyle{ dr \over dt } \ \ \ \longrightarrow $$ $$ \displaystyle{ dV \over dt } = 4 \pi r^2 \displaystyle{ dr \over dt } \ \ \ \longrightarrow $$

$\Big($ Now let $ \displaystyle{ dV \over dt } = 64 \pi $ and $ r =2. \Big) $

$$ 64 \pi = 4 \pi (2)^2 \displaystyle{ dr \over dt } \ \ \ \longrightarrow $$ $$ 64 \pi = 16 \pi \displaystyle{ dr \over dt } \ \ \ \longrightarrow $$ $$ \displaystyle{ dr \over dt } = 4 \ meters/hr. $$

Now differentiate the surface area equation with respect to time $t $, getting

$$ D \{ S \} = D \{ 4 \pi r^2 \} \ \ \ \longrightarrow $$ $$ \displaystyle{ dS \over dt } = 4 \pi \cdot 2r \displaystyle{ dr \over dt } \ \ \ \longrightarrow $$ $$ \displaystyle{ dS \over dt } = 8 \pi r \displaystyle{ dr \over dt } \ \ \ \longrightarrow $$

$ \Big($ Now let $ \displaystyle{ dr \over dt } = 4$ and $ r =2. \Big) $

$$ \displaystyle{ dS \over dt } = 8 \pi (2)(4) \ \ \ \longrightarrow $$ $$ \displaystyle{ dS \over dt } = 64 \pi \ m^2/hr. \approx 201.06 \ meters^2/hr. $$

Click HERE to return to the list of problems.