SOLUTIONS TO LIMITS USING THE SQUEEZE PRINCIPLE


SOLUTION 1 : First note that

$ -1 \le \sin x \le +1 $

because of the well-known properties of the sine function. Since we are computing the limit as x goes to infinity, it is reasonable to assume that x > 0 . Thus,

$ \displaystyle{ { -1 \over x } \le { \sin x \over x } \le { 1 \over x } } $ .

Since

$ \displaystyle{ \lim_{ x \to \infty } \ { -1 \over x } = 0 = \lim_{ x \to \infty } \ { 1 \over x } } $ ,

it follows from the Squeeze Principle that

$ \displaystyle{ \lim_{ x \to \infty } \ { \sin x \over x } = 0 } $ .

Click HERE to return to the list of problems.



SOLUTION 2 : First note that

$ -1 \le \cos x \le +1 $

because of the well-known properties of the cosine function. Now multiply by -1, reversing the inequalities and getting

$ +1 \ge - \cos x \ge -1 $

or

$ -1 \le - \cos x \le +1 $ .

Next, add 2 to each component to get

$ 1 \le 2 - \cos x \le 3 $ .

Since we are computing the limit as x goes to infinity, it is reasonable to assume that x + 3 > 0. Thus,

$ \displaystyle{ { 1 \over x+3 } \le { 2 - \cos x \over x+3 } \le { 3 \over x+3 } } $ .

Since

$ \displaystyle{ \lim_{ x \to \infty } \ { 1 \over x+3 } = 0 = \lim_{ x \to \infty } \ { 3 \over x+3 } } $ ,

it follows from the Squeeze Principle that

$ \displaystyle{ \lim_{ x \to \infty } \ { 2 - \cos x \over x+3 } = 0 } $ .

Click HERE to return to the list of problems.



SOLUTION 3 : First note that

$ -1 \le \cos(2x)\le +1 $

because of the well-known properties of the cosine function, and therefore

$ 0 \le \cos^2 (2x)\le +1 $ .

Since we are computing the limit as x goes to infinity, it is reasonable to assume that 3 - 2x < 0. Now divide each component by 3 - 2x, reversing the inequalities and getting

$ \displaystyle{ { 0 \over 3-2x } \ge { \cos^2 (2x) \over 3-2x } \ge { 1 \over 3-2x } } $ ,

or

$ \displaystyle{ { 1 \over 3-2x } \le { \cos^2 (2x) \over 3-2x } \le 0 } $ .

Since

$ \displaystyle{ \lim_{ x \to \infty } \ { 1 \over 3-2x } = 0 = \lim_{ x \to \infty } \ 0 } $ ,

it follows from the Squeeze Principle that

$ \displaystyle{ \lim_{ x \to \infty } \ { \cos^2 (2x) \over 3-2x } = 0 } $ .

Click HERE to return to the list of problems.



SOLUTION 4 : Note that $ \displaystyle{ \lim_{ x \to 0^{-} } \ \cos \Big( { 2 \over x }\Big) } $ DOES NOT EXIST since values of $ \displaystyle{ \cos \Big( { 2 \over x }\Big) } $ oscillate between -1 and +1 as x approaches 0 from the left. However, this does NOT necessarily mean that $ \displaystyle{ \lim_{ x \to 0^{-} } \ { x^3 \cos \Big( { 2 \over x }\Big) } } $ does not exist ! ? #. Indeed, x3 < 0 and

$ \displaystyle{ -1 \le \cos \Big( { 2 \over x }\Big) \le +1 } $

for x < 0. Multiply each component by x3, reversing the inequalities and getting

$ \displaystyle{ -x^3 \ge x^3 \cos \Big( { 2 \over x }\Big) \ge x^3 } $

or

$ \displaystyle{ x^3 \le x^3 \cos \Big( { 2 \over x }\Big) \le -x^3 } $ .

Since

$ \displaystyle{ \lim_{ x \to 0^{-} } \ x^3 = 0 = \lim_{ x \to 0^{-} } \ \{-x^3 \} } $ ,

it follows from the Squeeze Principle that

$ \displaystyle{ \lim_{ x \to 0^{-} } \ x^3 \cos \Big( { 2 \over x }\Big) = 0 } $ .

Click HERE to return to the list of problems.



SOLUTION 5 : First note that

$ -1 \le \sin x \le +1 $ ,

so that

$ 0 \le \sin^2 x \le 1 $

and

$ 2 \le 2 + \sin^2 x \le 3 $ .

Since we are computing the limit as x goes to infinity, it is reasonable to assume that x+100 > 0. Thus, dividing by x+100 and multiplying by x2, we get

$ \displaystyle{ { 2 \over x + 100 } \le { 2 + \sin^2 x \over x + 100 } \le { 3 \over x + 100 } } $

and

$ \displaystyle{ { 2 x^2\over x + 100 } \le { x^2 (2 + \sin^2 x ) \over x + 100 } \le { 3x^2 \over x + 100 } } $ .

Then

$ \displaystyle{ \lim_{ x \to \infty } \ { 2x^2 \over x+100 } } $ = $ \displaystyle{ \lim_{ x \to \infty } \ { 2x^2 \over x+100 } \ { \displaystyle{ 1 \over x } \over \displaystyle{ 1 \over x } } } $

= $ \displaystyle{ \lim_{ x \to \infty } \ { 2x \over 1 + \displaystyle{100 \over x } } } $

= $ \displaystyle{ \infty \over 1 + 0 } $

= $ \infty $ .

Similarly,

$ \displaystyle{ \lim_{ x \to \infty } \ { 3x^2 \over x+100 } } $ = $ \infty $ .

Thus, it follows from the Squeeze Principle that

$ \displaystyle{ \lim_{ x \to \infty } \ { x^2 (2 + \sin^2 x) \over x+100 } } $ = $ \infty $ (does not exist).

Click HERE to return to the list of problems.



SOLUTION 6 : First note that

$ -1 \le \sin(3x) \le +1 $ ,

so that

$ -1 \le - \sin(3x) \le +1 $ ,

$ 5x^2 -1 \le 5x^2 - \sin(3x) \le 5x^2 + 1 $ ,

and

$ \displaystyle{ { 5x^2-1 \over x^2 + 10 } \le { 5x^2 - \sin(3x) \over x^2 + 10 } \le { 5x^2 +1 \over x^2 + 10 } } $ .

Then

$ \displaystyle{ \lim_{ x \to -\infty } \ { 5x^2 - 1 \over x^2+10 } } $

= $ \displaystyle{ \lim_{ x \to -\infty } \ { 5x^2 - 1 \over x^2+10 } \ { \displaystyle{ 1 \over x^2 } \over \displaystyle{ 1 \over x^2 } } } $

= $ \displaystyle{ \lim_{ x \to -\infty } \ { 5 - \displaystyle{ 1 \over x^2 } \over 1 + \displaystyle{ 10 \over x^2 } } } $

= $ \displaystyle{ 5 - 0 \over 1 + 0 } $

= 5 .

Similarly,

$ \displaystyle{ \lim_{ x \to -\infty } \ { 5x^2 + 1 \over x^2+10 } } $ = 5 .

Thus, it follows from the Squeeze Principle that

$ \displaystyle{ \lim_{ x \to -\infty } \ { 5x^2 - \sin(3x) \over x^2+10 } } $ = 5 .

Click HERE to return to the list of problems.



SOLUTION 7 : First note that

$ -1 \le \sin x \le +1 $

and

$ -1 \le \cos x \le +1 $ ,

so that

$ -1 \le \cos^3 x \le +1 $

and

$ -2 \le \sin x + \cos^3 x \le +2 $ .

Since we are computing the limit as x goes to negative infinity, it is reasonable to assume that x-3 < 0. Thus, dividing by x-3, we get

$ \displaystyle{ { -2 \over x-3 } \ge { \sin x + \cos^3 x \over x-3 } \ge { 2 \over x-3 } } $

or

$ \displaystyle{ { 2 \over x-3 }
\le { \sin x + \cos^3 x \over x-3 } \le { -2 \over x-3 } } $ .

Now divide by x2 + 1 and multiply by x2 , getting

$ \displaystyle{ { 2 x^2\over (x^2 + 1) (x-3) }
\le { x^2 (\sin x + \cos^3 x ) \over (x^2 + 1) (x-3) } \le { -2x^2 \over (x^2 + 1) (x-3) } } $ .

Then

$ \displaystyle{ \lim_{ x \to -\infty } \ { 2 x^2 \over (x^2+1) (x-3) } } $

= $ \displaystyle{ \lim_{ x \to -\infty } \ { 2 x^2 \over x^3 - 3x^2 + x - 3 } } $

= $ \displaystyle{ \lim_{ x \to -\infty } \ { 2 x^2 \over x^3 - 3x^2 + x - 3 } \
{ \displaystyle{ 1 \over x^3 } \over \displaystyle{ 1 \over x^3 } } } $

= $ \displaystyle{ \lim_{ x \to -\infty } \ { \displaystyle{ 2 \over x } \over 1 -...
... 3 \over x } + \displaystyle{ 1 \over x^2 } - \displaystyle{ 3 \over x^3 } } } $

= $ \displaystyle{ 0 \over 1 - 0 + 0 - 0 } $

= 0 .

Similarly,

$ \displaystyle{ \lim_{ x \to -\infty } \ { -2 x^2 \over (x^2+1) (x-3) } } $ = 0 .

It follows from the Squeeze Principle that

$ \displaystyle{ \lim_{ x \to -\infty } \ { x^2 ( \sin x + \cos^3 x ) \over (x^2+1) (x-3) } } $ = 0 .

Click HERE to return to the list of problems.



SOLUTION 8 : Since

$ \displaystyle{ \lim_{ \theta \to {-1^{+} } } { \theta^2 + \theta - 2 \over \theta + 3 } } $ = $ \displaystyle{ { (-1)^2 + (-1) - 2 \over (-1) + 3 } } = -1 $

and

$ \displaystyle{ \lim_{ \theta \to {-1^{+} } } { \theta^2 + 2 \theta - 1 \over \theta + 3 } } $ = $ \displaystyle{ { (-1)^2 + 2(-1) - 1 \over (-1) + 3 } } = -1 $ ,

it follows from the Squeeze Principle that

$ \displaystyle{ \lim_{ \theta \to {-1^{+} } } { f( \theta ) \over \theta^2 } } = -1 $ ,

that is,

$ -1 = \displaystyle{ \lim_{ \theta \to {-1^{+} } } { f( \theta ) \over \theta^2 } } $

$ = \displaystyle{ \displaystyle{ \lim_{ \theta \to {-1^{+} } } f( \theta ) }
\over \displaystyle{ \lim_{ \theta \to {-1^{+} } } \theta^2 } } $

$ = \displaystyle{ \displaystyle{ \lim_{ \theta \to {-1^{+} } } f( \theta ) } \over (-1)^2 } $

$ = \displaystyle{ \lim_{ \theta \to {-1^{+} } } f( \theta ) } $ .

Thus,

$ \displaystyle{ \lim_{ \theta \to {-1^{+} } } f( \theta ) } = -1 $ .

Click HERE to return to the list of problems.



SOLUTION 9 : a.) First note that (See diagram below.)

area of triangle OAD < area of sector OAC < area of triangle OBC .





The area of triangle OAD is

$ \displaystyle{ 1 \over 2 }$ (base) (height) $ = \displaystyle{ 1 \over 2 } (\cos \theta) (\sin \theta) $ .

The area of sector OAC is

$ \displaystyle{ \theta \over 2 \pi } $ (area of circle) $ = \displaystyle{ \theta \over 2 \pi } (\pi (1)^2 )
= \displaystyle{ \theta \over 2 } $ .

The area of triangle OBC is

$ \displaystyle{ 1 \over 2 }$ (base) (height) $ = \displaystyle{ 1 \over 2 } (1) (\tan \theta)
= \displaystyle{ 1 \over 2 } \displaystyle{ \sin \theta \over \cos \theta } $ .

It follows that

$ \displaystyle{ 1 \over 2 } (\cos \theta) (\sin \theta) < \displaystyle{ \theta...
...
< \displaystyle{ 1 \over 2 } \displaystyle{ \sin \theta \over \cos \theta } $

or

$ (\cos \theta) (\sin \theta) < \theta < \displaystyle{ \sin \theta \over \cos \theta } $ .

b.) If $ 0 < \theta < \displaystyle{ \pi \over 2 } $, then $ \sin \theta > 0 $ and $ \cos \theta > 0 $ , so that dividing by $ \sin \theta $ results in

$ \cos \theta < \displaystyle{ \theta \over \sin \theta } < \displaystyle{ 1 \over \cos \theta } $ .

Taking reciprocals of these positive quantities gives

$ \displaystyle{ 1 \over \cos \theta } > \displaystyle{ \sin \theta \over \theta } > \cos \theta $

or

$ \cos \theta < \displaystyle{ \sin \theta \over \theta } < \displaystyle{ 1 \over \cos \theta } $ .

Since

$ \displaystyle{ \lim_{ \theta \to 0^{+} } \ { \cos \theta } } = \cos 0 = 1
= \displaystyle{ \lim_{ \theta \to 0^{+} } \ \Big( { 1 \over \cos \theta } \Big) } $ ,

it follows from the Squeeze Principle that

$ \displaystyle{ \lim_{ \theta \to 0^{+} } \ { \sin \theta \over \theta } } = 1 $ .

Click HERE to return to the list of problems.



SOLUTION 10 : Recall that function f is continuous at x=0 if

i.) f(0) is defined ,

ii.) $ \displaystyle{ \lim_{ x \to 0 } f(x) } $ exists ,

and

iii.) $ \displaystyle{ \lim_{ x \to 0 } f(x) = f(0) } $ .

First note that it is given that

i.) f(0) = 0 .

Use the Squeeze Principle to compute $ \displaystyle{ \lim_{ x \to 0 } f(x) } $ . For $ x \ne 0 $ we know that

$ -1 \le \sin \Big( \displaystyle{ 1 \over x } \Big) \le +1 $ ,

so that

$ -x^2 \le x^2 \sin \Big( \displaystyle{ 1 \over x } \Big) \le x^2 $ .

Since

$ \displaystyle{ \lim_{ x \to 0 } (-x^2) = 0 = \lim_{ x \to 0 } x^2 } $

it follows from the Squeeze Principle that

ii.) $ \displaystyle{ \lim_{ x \to 0 } f(x) } =
\displaystyle{ \lim_{ x \to 0 } \ x^2 \sin \Big( \displaystyle{ 1 \over x } \Big) } = 0 $ .

Finally,

iii.) $ \displaystyle{ \lim_{ x \to 0 } f(x) = 0 = f(0) } $ ,

confirming that function f is continuous at x=0 .

Click HERE to return to the list of problems.







Duane Kouba
1998-05-31