SOLUTION 3: Compute the area of the region enclosed by the graphs of the equations $ y=e^x $, $ y=e^{-x} $, and $ x=\ln 3 $ . Begin by finding the points of intersection of the two graphs. From $ y=e^{x} $ and $ y=e^{-x} $ we get that $$ e^{x} = e^{-x} \ \ \longrightarrow $$ $$ e^{x} = 1/e^{x} \ \ \longrightarrow $$ $$ e^{2x} = 1 \ \ \longrightarrow $$ $$ 2x = 0 $$ $$ x = 0 $$ From $ y=e^{x} $ and $ x= \ln 3 $ we get that (Recall that $ e^{\ln A}=A $.) $$ y=e^{\ln 3} \ \ \longrightarrow \ \ y=3 $$ From $ y=e^{-x} $ and $ x= \ln 3 $ we get that (Recall that $ B \ln A= \ln A^B $.) $$ y=e^{-\ln 3} = e^{\ln 3^{-1}} \ \ \longrightarrow \ \ y=3^{-1}= \frac{1}{3} $$ Now see the given graph of the enclosed region.

tex2html_wrap_inline125

Using vertical cross-sections to describe this region, we get that $$ 0 \le x \le \ln 3 \ \ and \ \ e^{-x} \le y \le e^{x} , $$ so that the area of this region is $$ AREA = \displaystyle{ \int_{0}^{\ln 3} (Top \ - \ Bottom) \ dx } $$ $$ = \displaystyle { \int_{0}^{\ln 3} (e^{x} - e^{-x}) \ dx } $$ $$ = \displaystyle { \Big(e^{x} - (-e^{-x})\Big) \Big\vert_{0}^{\ln 3} } $$ $$ = \displaystyle { \Big(e^{x} + e^{-x}\Big) \Big\vert_{0}^{\ln 3} } $$ $$ = \displaystyle { \Big(e^{\ln 3} + e^{-\ln 3}\Big) - \Big(e^{0} + e^{-0}\Big) } $$ $$ = \displaystyle { \Big(e^{\ln 3} + e^{\ln 3^{-1}}\Big) - \Big(1 + 1 \Big) } $$ $$ = \displaystyle { \Big(3 + \frac{1}{3}\Big) - 2 } $$ $$ = \displaystyle { \Big(\frac{10}{3}\Big) - 2 } $$ $$ = \displaystyle { \frac{10}{3} - \frac{6}{3} } $$ $$ = \displaystyle { \frac{4}{3} } $$

Click HERE to return to the list of problems.