SOLUTION 11: Compute the area of the region enclosed by the graphs of the equations $ y=x $, $ y=2x $, and $ y=6-x $ . Begin by finding the points of intersection of the three graphs. From $ y=x $ and $ y=2x $ we get that $$ x = 2x \ \ \longrightarrow \ \ -x = 0 \ \ \longrightarrow \ \ x = 0 $$ From $ y=x $ and $ y=6-x $ we get that $$ x = 6-x \ \ \longrightarrow \ \ 2x = 6 \ \ \longrightarrow \ \ \ x = 3 $$ From $ y=2x $ and $ y=6-x $ we get that $$ 2x = 6-x \ \ \longrightarrow \ \ 3x = 6 \ \ \longrightarrow \ \ x = 2 $$ Now see the given graph of the enclosed region.

tex2html_wrap_inline125

Using vertical cross-sections to describe this region, which is made up of two smaller regions, we get that $$ 0 \le x \le 2 \ \ and \ \ x \le y \le 2x $$ in addition to $$ 2 \le x \le 3 \ \ and \ \ x \le y \le 6-x \ ,$$ so that the area of this region is $$ AREA = \displaystyle{ \int_{0}^{2} (Top \ - \ Bottom) \ dx + \int_{2}^{3} (Top \ - \ Bottom) \ dx } $$ $$ = \displaystyle { \int_{0}^{2} (2x - x) \ dx + \int_{2}^{3} ((6-x) - x) \ dx } $$ $$ = \displaystyle { \int_{0}^{2} x \ dx + \int_{2}^{3} (6-2x) \ dx } $$ $$ = \displaystyle { \frac{x^{2}}{2} \Big\vert_{0}^{2} + \Big( 6x - x^{2} \Big) \Big\vert_{2}^{3} } $$ $$ = \displaystyle { \Big( \frac{2^{2}}{2} - \frac{0^{2}}{2} \Big) + \Big( (6 \cdot 3 - 3^{2}) - (6 \cdot 2 - 2^{2}) \Big) } $$ $$ = \displaystyle { \Big( 2 - 0 \Big) + \Big( 9 - 8 \Big) } $$ $$ = \displaystyle { 2 + 1 } $$ $$ = \displaystyle { 3 } $$

Click HERE to return to the list of problems.