Processing math: 100%


SOLUTION 25: Compute the area of the region enclosed by the graphs of the equations x=y2  (or  y=x  and  y=x) and x=y+2  (or  y=x2) . Begin by finding the points of intersection of the the two graphs. From x=y2 and x=y+2 we get that y2=y+2   y2y2=0   (y2)(y+1)=0    y=2  (and x=4)  or  y=1  (and x=1) Now see the given graph of the enclosed region.

tex2html_wrap_inline125

a.) Using vertical cross-sections to describe this region, we get that 0x1  and  xyx  in addition to 1x4  and  x2yx , so that the area of this region is AREA=10(Top  Bottom) dx+41(Top  Bottom dx =10(x(x)) dx+41(x(x2)) dx =102x dx+41(xx+2) dx =(43x3/2)|10+(23x3/2x22+2x)|41 =(43(1)3/243(0)3/2)+(23(4)3/2(4)22+2(4))(23(1)3/2(1)22+2(1))) =(43)+(163)(23+32) =18332 =632 =12232 =92 b.) Using horizontal cross-sections to describe this region, we get that 1y2  and  y2xy+2 , so that the area of this region is AREA=21(Right  Left) dy =21((y+2)y2) dy =(y22+2yy33)|21 =((2)22+2(2)(2)33)((1)22+2(1)(1)33) =(683)(122+13) =68312+213 =89312 =512 =10212 =92

Click HERE to return to the list of problems.