ESP
Kouba
Worksheet 5

1.) Compute \(\frac{\partial z}{\partial x} \) and \(\frac{\partial^2 z}{\partial x^2} \) for each of the following.

a.) \(z = e^{\tan(y-x)} \cdot \ln(x^2+y^2) \)

b.) \(z = g(u,v) \) with \(u = 2x - 3y \), \(v = x^2 + y^2 \)

2.) Assume that \(f \) is differentiable and \(z = f\left(\frac{x}{y}\right) \).

 Show that

 \[x \cdot z_x + y \cdot z_y = 0 \]

3.) Classify the critical points for

 \[f(x,y) = xy^2 - x^2y + x - y \]

4.) Find all points on the surface \(xy + z = 8 \) which are closest to the origin.

5.) Let \(R \) be the region bounded by the graphs of \(y = \sqrt{x} \) and \(y = \frac{1}{4}x \).

 a.) Describe \(R \) using vertical cross-sections.

 b.) Describe \(R \) using horizontal cross-sections.

 c.) Set up iterated integrals for each of the following

 i.) \(\iint_R f(x,y) \, dx \, dy \)

 ii.) \(\iint_R f(x,y) \, dy \, dx \)
6.) Let R be the region above the x-axis and below the semi-circle of radius 2 centered at $(2,0)$.

a.) Describe R using vertical cross-sections.
b.) Describe R using horizontal cross-sections.
c.) Describe R in the form $\alpha \leq \theta \leq \beta$, $r_1(\theta) \leq r \leq r_2(\theta)$.
d.) Describe R in the form $a \leq r \leq b$, $\phi_1(r) \leq \phi \leq \phi_2(r)$.

7.) Sketch each of the following regions.

a.) $0 \leq x \leq 1$, $x \leq y \leq e^x$
b.) $-1 \leq y \leq \sqrt{3}$, $\arctan y \leq x \leq \frac{\pi}{3}$
c.) $\frac{\pi}{4} \leq \theta \leq \frac{3\pi}{4}$, $3 \sec \theta \leq r \leq 6 \sin \theta$
d.) $0 \leq r \leq \sqrt{2}$, $\frac{\pi}{6} \leq \theta \leq \frac{\pi}{4}$ and $\sqrt{2} \leq r \leq 2$, $\frac{\pi}{6} \leq \theta \leq \arcsin (\frac{1}{r})$

8.) Compute the approximating sum $\sum_{i=1}^{n} f(P_i) \cdot A_i$ for the function $f(x, y) = x^2 + y^2$ on the square region R with vertices
(1,0), (3,0), (1,2), and (3,2), which is divided into four equal squares using the geometric center of each \(R_i \) as the \(P_i \) for \(i = 1, 2, 3, 4 \).

9.) Evaluate each of the following:
 a.) \(\int_0^1 \int_2^3 2x^2 \gamma \ dy \ dx \)
 b.) \(\int_{1}^{2} \int_{1}^{x} \frac{x^2}{y^2} \ dy \ dx \)
 c.) \(\int_{0}^{\sqrt{\pi}} \int_{0}^{\gamma} \sin \gamma^2 \ dx \ dy \)
 d.) \(\int_{0}^{1} \int_{0}^{1} \sqrt{1 + x^2} \ dx \ dy \)
 e.) \(\int_{0}^{8} \int_{0}^{2} \ e^{x^4} \ dx \ dy \)

10.) Consider the solid tetrahedron with vertices \((0,0,0), (1,0,0), (0,2,0), \) and \((0,0,3)\).
 a.) Its top surface lies in a plane. Determine an equation for this plane.
 b.) Compute the volume of the tetrahedron.