Musical Pitch

The pitch of a musical note is determined by the frequency of the vibration which causes it. Middle C on the piano, for example, corresponds to a vibration of 263 hertz (cycles per second). A note one octave above middle C vibrates at 526 hertz, and a note two octaves above middle C vibrates at 1052 hertz. (See Table 1.7.)

<table>
<thead>
<tr>
<th>Number, n, of octaves above middle C</th>
<th>Number of hertz $V = f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>263</td>
</tr>
<tr>
<td>1</td>
<td>526</td>
</tr>
<tr>
<td>2</td>
<td>1052</td>
</tr>
<tr>
<td>3</td>
<td>2104</td>
</tr>
<tr>
<td>4</td>
<td>4208</td>
</tr>
</tbody>
</table>

Table 1.7 Pitch of notes above middle C

<table>
<thead>
<tr>
<th>n</th>
<th>$V = 263 \cdot 2^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>$263 \cdot 2^{-3} = 263(1/2^3) = 32.875$</td>
</tr>
<tr>
<td>-2</td>
<td>$263 \cdot 2^{-2} = 263(1/2^2) = 65.75$</td>
</tr>
<tr>
<td>-1</td>
<td>$263 \cdot 2^{-1} = 263(1/2) = 131.5$</td>
</tr>
<tr>
<td>0</td>
<td>$263 \cdot 2^0 = 263$</td>
</tr>
</tbody>
</table>

Table 1.8 Pitch of notes below middle C

Notice that

\[
\frac{526}{263} = 2 \quad \text{and} \quad \frac{1052}{526} = 2 \quad \text{and} \quad \frac{2104}{1052} = 2
\]

and so on. In other words, each value of V is twice the value before, so

\[
f(1) = 526 = 263 \cdot 2 = 263 \cdot 2^1
\]
\[
f(2) = 1052 = 2 \cdot 263 = 2 \cdot 263 \cdot 2 = 263 \cdot 2^2
\]
\[
f(3) = 2104 = 2 \cdot 1052 = 2 \cdot 2 \cdot 263 = 2 \cdot 263 \cdot 2 = 263 \cdot 2^3.
\]

In general

\[
V = f(n) = 263 \cdot 2^n.
\]

The base 2 represents the fact that as we go up an octave, the frequency of vibrations doubles. Indeed, our ears hear a note as one octave higher than another precisely because it vibrates twice as fast. For the negative values of n in Table 1.8, this function represents the octaves below middle C. The notes on a piano are represented by values of n between -3 and 4, and the human ear finds values of n between -4 and 7 audible.

Although $V = f(n) = 263 \cdot 2^n$ makes sense in musical terms only for certain values of n, values of the function $f(x) = 263 \cdot 2^x$ can be calculated for all real x, and its graph has the typical exponential shape, as can be seen in Figure 1.19. It is concave up, climbing faster and faster as x increases.

![Figure 1.19: Pitch as a function of number of octaves above middle C](image-url)