Beverton–Holt Growth Curve

Recall: For discrete exponential growth/decay we have

$$N_t = N_0 \cdot R^t \text{ for } t = 0, 1, 2, 3, \ldots$$

and for some constant R. Note also that

$$\begin{cases}
N_t \text{ increases if } R > 1 \\
N_t \text{ decreases if } 0 < R < 1 \\
N_t \text{ is constant if } R = 1
\end{cases}$$

In addition, we have

$$N_{t+1} = N_0 \cdot R^{t+1} = N_0 \cdot R \cdot R^t = R(N_0 R^t) = R \cdot N_t$$

so that

$$N_{t+1} = RN_t$$

and

$$\frac{N_t}{N_{t+1}} = \frac{1}{R}$$

for $t = 0, 1, 2, 3, \ldots$.

We call $\frac{N_t}{N_{t+1}}$ the parent–offspring ratio. Since $\frac{1}{R}$ is a constant, we
say the growth is density independent, i.e., the growth rate does not depend on the size of N_t at time t. In many cases, this is unrealistic due to limitations imposed by space, habitat, food, etc. It is more realistic to assume that the growth rate decreases as N_t increases.

It is useful to plot $\frac{N_t}{N_{t+1}}$ vs. N_t.

For discrete exponential growth/decay we have

\[
\frac{N_t}{N_{t+1}} = \frac{1}{R}
\]

Beaverton-Holt Growth Curve

This discrete model assumes that the graph of $\frac{N_t}{N_{t+1}}$ vs. N_t
is an increasing linear function, which implies:
1.) $R > 1$ but decreases over time.
2.) The growth rate of N_t decreases over time.
3.) The growth of N_t is density dependent.

Note: If $\frac{N_t}{N_{t+1}} = 1$, then $N_{t+1} = N_t$,
which means there are no new members and N_t has reached its carrying capacity, K, i.e.,
$\lim_{t \to \infty} N_t = K$. The following graph is consistent with this information:
The equation of the line is:
\[Y = mX + b \rightarrow \]
\[\frac{N_t}{N_{t+1}} = \left(1 - \frac{1}{R}\right) \cdot \frac{N_t}{K} + \frac{1}{R} \rightarrow \]
\[\frac{R \cdot N_t}{N_{t+1}} = \frac{R-1}{K} \cdot N_t + 1 \rightarrow \]
\[N_{t+1} = \frac{R \cdot N_t}{1 + \frac{R-1}{K} \cdot N_t} \quad \text{for } t=0,1,2,\ldots \]

This is the Beverton-Holt Growth Recursion.