

Math 17A
Kouba
Functions- Review

DEFINITION : In an equation composed of x 's and y 's, variable y is a function of x if each admissible x -value has exactly one y -value.

NOTE : The graph of a function passes the *vertical line test* . That is, a vertical line passed through the graph will touch the graph in at most one point.

EXAMPLE : Assume that $xy - 3 = x^2 + 2y$. Then $xy - 2y = x^2 + 3 \rightarrow$

$$(x - 2)y = x^2 + 3 \rightarrow$$

$$y = \frac{x^2 + 3}{x - 2} \rightarrow$$

y is a function of x .

EXAMPLE : Assume that $xy^2 - 1 = x + y$. If $x = 1$, then

$$y^2 - 1 = 1 + y \rightarrow$$

$$y^2 - y - 2 = 0 \rightarrow$$

$$(y - 2)(y + 1) = 0 \rightarrow$$

$$y = 2 \text{ or } y = -1 \rightarrow$$

$x = 1$ has TWO y -values \rightarrow

y is NOT a function of x .

NOTATION : If y is a function of x , then we write $y = f(x)$.

EXAMPLE : If $y = x^2 + x$, then y is a function of x and we write $f(x) = x^2 + x$; then

$$\text{a.) } f(-2) = (-2)^2 + (-2) = 4 - 2 = 2.$$

$$\text{b.) } f(2x - 1) = (2x - 1)^2 + (2x - 1) = 4x^2 - 4x + 1 + 2x - 1 = 4x^2 - 2x.$$

DEFINITION : Assume that $y = f(x)$ is a function. The domain of function f is the set of all admissible x -values. The range of function f is the set of all corresponding y -values.

EXAMPLE : Consider function $f(x) = \sqrt{2x - 6}$. Then $2x - 6 \geq 0 \rightarrow 2x \geq 6 \rightarrow x \geq 3 \rightarrow$

$$\text{DOMAIN : } x \geq 3.$$

Since $\sqrt{2x - 6} \geq 0$, $f(3) = 0$, and $2x - 6$ gets infinitely large as x gets infinitely large, it follows that

$$\text{RANGE : } y \geq 0.$$

DEFINITION : A *function* $y = f(x)$ is one-to-one if each y -value has exactly one x -value. More precisely, a one-to-one function has the property that if $f(x_1) = f(x_2)$ (y -values are equal), then $x_1 = x_2$ (x -values are equal).

NOTE : The graph of a one-to-one function passes the *horizontal line test*. That is, a horizontal line passed through the graph will touch the graph in at most one point.

EXAMPLE : Consider the function (parabola) $y = x^2 - 5$. If $y = 4$, then

$$4 = x^2 - 5 \rightarrow$$

$$x^2 = 9 \rightarrow$$

$$x = 3 \text{ or } x = -3 \rightarrow$$

$$y = 4 \text{ has TWO } x\text{-values} \rightarrow$$

function y is NOT one-to-one .

EXAMPLE : Consider the function $f(x) = \frac{x}{x+3}$. Prove that f is one-to-one:

$$\begin{aligned} f(x_1) = f(x_2) &\rightarrow \\ \frac{x_1}{x_1+3} = \frac{x_2}{x_2+3} &\rightarrow \\ x_1(x_2+3) = x_2(x_1+3) &\rightarrow \\ x_1x_2 + 3x_1 = x_1x_2 + 3x_2 &\rightarrow \\ 3x_1 = 3x_2 &\rightarrow \\ x_1 = x_2 &\rightarrow \end{aligned}$$

function f IS one-to-one .

DEFINITION : Assume that $y = f(x)$ and $y = g(x)$ are functions. The composition of functions f and g is

$$(f \circ g)(x) = f(g(x)) .$$

EXAMPLE : Consider the functions $f(x) = \frac{x}{10-x}$ and $g(x) = \frac{1}{x+8}$. Then

$$\begin{aligned} (f \circ g)(x) &= f(g(x)) = f\left(\frac{1}{x+8}\right) \\ &= \frac{\frac{1}{x+8}}{10 - \left(\frac{1}{x+8}\right)} \end{aligned}$$

$$\begin{aligned}
&= \frac{1}{10 - \left(\frac{1}{x+8} \right)} \cdot \frac{x+8}{x+8} \\
&= \frac{1}{10(x+8) - 1} \\
&= \frac{1}{10x+79} .
\end{aligned}$$

DEFINITION : The inverse function of function $y = f(x)$ is the function $y = f^{-1}(x)$ for which

$$f(f^{-1}(x)) = x \text{ and } f^{-1}(f(x)) = x .$$

FACT : If $y = f(x)$ is a one-to-one function, then f has an inverse function.

SEE INVERSE FUNCTION HANDOUT.

EXAMPLE : The function $f(x) = \frac{x}{x+3}$ is one-to-one. Find its inverse :

$$y = \frac{x}{x+3} \quad \longrightarrow \quad (\text{Switch variables.}) \quad x = \frac{y}{y+3}$$

$$(\text{Solve for } y.) \quad x(y+3) = y \quad \longrightarrow$$

$$xy + 3x = y \quad \longrightarrow$$

$$xy - y = -3x \quad \longrightarrow$$

$$y(x-1) = -3x \quad \longrightarrow$$

$$y = \frac{-3x}{x-1} \quad \longrightarrow \quad \text{inverse function is } f^{-1}(x) = \frac{3x}{1-x} .$$