Math 17A
Kouba

Graphing Using First and Second Derivatives

1. If \(f' \) is +, then \(f \) is increasing (\(\uparrow \)).
2. If \(f' \) is −, then \(f \) is decreasing (\(\downarrow \)).
3. If \(f'' \) is + (means \(f' \) is \(\uparrow \)), then \(f \) is concave up (\(\cup \)).
4. If \(f'' \) is − (means \(f' \) is \(\downarrow \)), then \(f \) is concave down (\(\cap \)).

\[
\begin{array}{cc}
+ & 0 & - \\
\hline
f' & \text{relative (or absolute) maximum} & x = a
\end{array}
\quad
\begin{array}{cc}
- & 0 & + \\
\hline
f' & \text{relative (or absolute) minimum} & x = a
\end{array}
\]

\[
\begin{array}{cc}
+ & 0 & - \\
\hline
f'' & \text{inflection point} & x = a
\end{array}
\quad
\begin{array}{cc}
- & 0 & + \\
\hline
f'' & \text{inflection point} & x = a
\end{array}
\]
For each of the following functions begin by finding the domain of the function. Determine all relative and absolute maximum and minimum values and inflection points. State clearly the intervals on which the function is increasing (↑), decreasing (↓), concave up (∪), and concave down (∩). Determine all vertical and horizontal asymptotes (when appropriate) and x- and y-intercepts. Neatly sketch the graph.

Example 1:

\[f(x) = (x-1)^3(x-5) \]

\[f'(x) = 3(x-1)^2(1) + 3(x-1)^2(x-5) \]

\[= (x-1)^2[(x-1)+3(x-5)] \]

\[= (x-1)^2[4x-16] = 0 \]

\[f''(x) = (x-1)^2(4) + 2(x-1)[4x-16] \]

\[= 4(x-1)[(x-1)+2(x-4)] \]

\[= 4(x-1)[3x-9] = 0 \]

\[f = \uparrow \text{ for } x > 4, \]

\[f = \downarrow \text{ for } x < 4, \]

\[f = 0 \text{ for } x < 1, x > 3, \]

\[f = \cap \text{ for } 1 < x < 3, \]

\[y = 0: \text{ } x = 1, x = 5 \]

\[x = 0: \text{ } y = 5 \]

Example 2:

\[y = 3x^{3/2} - 2x \]

\[y' = 3 \cdot \frac{2}{3} x^{1/2} - 2 = 2x^{1/2} - 2 \]

\[= 2 \left(\frac{1}{x^{1/2}} - 1 \right) = 2 \left(\frac{1-x^{1/2}}{x^{1/2}} \right) = 0 \]

\[y'' = 2 \cdot \frac{1}{3} x^{-1/2} = \frac{-2}{3} x^{-3/2} \]
Example 3: \(y = \frac{x^2 + 1}{x^2 - 2} \)

Domain: all \(x \neq \pm \sqrt{2} \)

\[
\begin{align*}
y' &= \frac{(x^2 - 2)(2x) - (x^2 + 1)(2x)}{(x^2 - 2)^2} = \frac{-6x}{(x^2 - 2)^2} = 0 \\
y'' &= \frac{(x^2 - 2)^2(-6) - (x^2 + 1)(2)(x^2 - 2) - 2x}{(x^2 - 2)^4} = \frac{6(x^2 + 3x^2)}{(x^2 - 2)^3} = 0
\end{align*}
\]

Critical Points:
- \(x = -\sqrt{2} \) (local max.)
- \(x = \sqrt{2} \) (local min.)

Behavior:
- \(y \to \infty \) for \(x < -\sqrt{2}, x < 0 \)
- \(y \to \frac{1}{x} \) for \(0 < x < \sqrt{2}, x > \sqrt{2} \)
- \(y \to 0 \) for \(x < -\sqrt{2}, x > \sqrt{2} \)

\[x = 0 : \ y = -\frac{i}{2} \]

\[y = 0 : \ \text{none} \]

\[
\begin{align*}
\lim_{x \to +\sqrt{2}^+} \frac{x^2 + 1}{x^2 - 2} &= +\infty, \\
\lim_{x \to +\sqrt{2}^-} \frac{x^2 + 1}{x^2 - 2} &= -\infty \\
\lim_{x \to -\sqrt{2}^+} \frac{x^2 + 1}{x^2 - 2} &= -\infty, \\
\lim_{x \to -\sqrt{2}^-} \frac{x^2 + 1}{x^2 - 2} &= +\infty \\
\lim_{x \to \infty} \frac{x^2 + 1}{x^2 - 2} &= 1
\end{align*}
\]

Asymptotes:
- Vertical asymptote: \(x = \pm \sqrt{2} \)
- Horizontal asymptote: \(y = 1 \)