I.) Properties of the Definite Integral

a.) \(\int_a^a f(x) \, dx = 0 \)

b.) \(\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx \)

c.) \(\int_a^b cf(x) \, dx = c \int_a^b f(x) \, dx \)

d.) \(\int_a^b (f(x) \pm g(x)) \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx \)

e.) If \(f(x) \geq 0 \) then \(\int_a^b f(x) \, dx \geq 0 \) (if \(a < b \))

f.) If \(f(x) \geq g(x) \) then \(\int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx \) (if \(a < b \))

g.) \(\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx \)

h.) If \(m \leq f(x) \leq M \) then \(m(b - a) \leq \int_a^b f(x) \, dx \leq M(b - a) \)

II.) Applications of the Definite Integral

a.) Area of region: If \(f(x) \) is the height of region \(S \) at \(x \), then total area of \(S \) from \(a \) to \(b \) is

\[
\text{AREA} = \int_a^b f(x) \, dx
\]

b.) Mass of string: If \(f(x) \) is the density (mass/length units) of string at \(x \), then total mass of string from \(a \) to \(b \) is

\[
\text{MASS} = \int_a^b f(x) \, dx
\]

c.) Distance traveled: If \(f(t) \) is the speed of an object at time \(t \), then total distance traveled from time \(a \) to time \(b \) is

\[
\text{DISTANCE} = \int_a^b f(t) \, dt
\]

d.) Volume of solid: If \(A(x) \) is the cross-sectional area of a solid \(S \) at \(x \), then total volume of \(S \) from \(a \) to \(b \) is

\[
\text{VOLUME} = \int_a^b A(x) \, dx
\]