Math 17B

Kouba

Eigenvalues, Leslie Matrices, and Stable Age Distributions

WE WILL MAKE THE FOLLOWING ASSUMPTIONS ABOUT LESLIE MATRICES, \boldsymbol{L}

- 1.) L has two distinct eigenvalues, λ_1 and λ_2 , with $\lambda_1 > \lambda_2$.
- 2.) The larger eigenvalue $\lambda_1 > 0$ and the smaller eigenvalue $\lambda_2 < 0$.
- 3.) $|\lambda_2| < \lambda_1$.
- 4.) Eigenvalue λ_1 determines the growth rate for the population.
 - a.) If $0 < \lambda_1 < 1$, then the population size decreases as $t \longrightarrow \infty$.
 - b.) If $\lambda_1 > 1$, then the population size increases as $t \longrightarrow \infty$.
- 5.) Any eigenvector V_1 for eigenvalue λ_1 determines a stable age distribution. Assume that $V_1 = \begin{pmatrix} d \\ e \end{pmatrix}$. Being a stable age distribution means that as $t \longrightarrow \infty$ the number of zero-year olds approaches the ratio $\frac{d}{d+e}$ of the entire population; the number of one-year olds approaches the ratio $\frac{e}{d+e}$ of the entire population.

EXAMPLE : Consider the Leslie matrix $L = \begin{pmatrix} 1.5 & 2 \\ 0.08 & 0 \end{pmatrix}$. Find its eigenvalues, eigenvectors, and stable age distribution. Is the population increasing or decreasing as $t \longrightarrow \infty$?

$$L - \lambda I = \begin{pmatrix} 1.5 & 2 \\ 0.08 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1.5 & 2 \\ 0.08 & 0 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

$$= \begin{pmatrix} 1.5 - \lambda & 2 \\ 0.08 & -\lambda \end{pmatrix} \longrightarrow$$

$$det(L - \lambda I) = det \begin{pmatrix} 1.5 - \lambda & 2 \\ 0.08 & -\lambda \end{pmatrix}$$

$$= (1.5 - \lambda)(-\lambda) - (2)(0.08) = \lambda^2 - 1.5\lambda - 0.16 = 0 \longrightarrow \text{ (Use quadratic formula.)}$$

$$\lambda = \frac{1.5 \pm \sqrt{(-1.5)^2 - (4)(1)(-0.16)}}{2} \longrightarrow \lambda_1 = 1.6 \text{ and } \lambda_2 = -0.1 \text{ .}$$

Note that since $\lambda_1=1.6>1$, the population increases as $t\longrightarrow\infty$.

Now find an eigenvector for each eigenvalue by solving $(L - \lambda I)X = \mathcal{O}$ for X:

For
$$\frac{\lambda_1 = 1.6}{0.08}$$
: $\begin{pmatrix} 1.5 - 1.6 & 2 & 0 \\ 0.08 & 0 - 1.6 & 0 \end{pmatrix} \sim \begin{pmatrix} -0.1 & 2 & 0 \\ 0.08 & -1.6 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -20 & 0 \\ 8 & -160 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -20 & 0 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -20 & 0$

 $x_1 - 20x_2 = 0$ so let $x_2 = t$ any number, then $x_1 = 20x_2 = 20t$ and

$$X=\left(x_1\atop x_2\right)=\left(20t\atop t\right)=t\left(20\atop 1\right)$$
 , so choose $V_1=\left(20\atop 1\right)$ as an eigenvector for $\lambda_1=1.6$.

Note that vector $V_1=\begin{pmatrix} 20\\1 \end{pmatrix}$ is a stable age distribution. This means that as $t\longrightarrow \infty$ the number of zero-year olds is approximately $\frac{20}{20+1}\approx 0.9523=95.23\%$. In addition, the number of one-year olds is approximately $\frac{1}{20+1}\approx 0.0477=4.77\%$.

For
$$\lambda_{2} = -0.1$$
: $\begin{pmatrix} 1.5 + 0.1 & 2 & 0 \\ 0.08 & 0.1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1.6 & 2 & 0 \\ 0.08 & 0.1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1.25 & 0 \\ 8 & 10 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1.25 & 0 \\ 0 & 0 &$

 $x_1 + 1.25x_2 = 0$ so let $x_2 = t$ any number, then $x_1 = -1.25x_2 = -1.25t = (-5/4)t$ and

$$X=\begin{pmatrix}x_1\\x_2\end{pmatrix}=\begin{pmatrix}(-5/4)t\\t\end{pmatrix}=(1/4)t\begin{pmatrix}-5\\4\end{pmatrix}\text{, so choose }V_2=\begin{pmatrix}-5\\4\end{pmatrix}\text{ as an eigenvector for }\lambda_{\pmb{\lambda}}=-\text{O.}($$