Assume that a solid object is suspended above the x-axis from \(x=a \) to \(x=b \). Assume that the area \(A(x) \) of a cross-sectional slice, taken perpendicular to the x-axis at \(x \) is known.

Then

\[
\text{Volume} = \int_a^b A(x) \, dx
\]

Solid of Revolution

\[
y = f(x)
\]

\[
\text{slice has area } A(x)
\]
Consider a region R below the graph of $y=f(x)$ and above the interval $[a,b]$. Create a solid of revolution by revolving R about the x-axis. The cross-sectional slice at x is a circle with area

$$A(x) = \pi r^2 = \pi (f(x))^2.$$

So

$$\text{Vol} = \int_a^b \pi (f(x))^2 \, dx.$$