Recall: (from Math 17B) If $\frac{dx}{dt} = 3x$ and $x(0) = 4$, then using separation of variables the solution is $x = 4e^{3t}$.

In general, the solution to $\frac{dx}{dt} = ax$ is $x = Ce^{at}$. This leads us to "guess" that the solution to the system of D.E.'s

$$X' = AX$$

takes the form

$$X = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} e^{\lambda t}$$

where $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ is an unknown vector and λ is an unknown constant. Substituting (*) into $X' = AX$ gives

$$X' = \frac{d}{dt} \left\{ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} e^{\lambda t} \right\} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \cdot \lambda e^{\lambda t}$$

or

$$X' = \lambda \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} e^{\lambda t}$$

and
\[AX = A \left[u_1 e^{\lambda_1 t} \right] = A \left[u_2 \right] e^{\lambda_1 t} \]

Thus,

\[X' = AX \rightarrow \]

\[A \left[u_1 \right] e^{\lambda_1 t} = \lambda \left[u_1 \right] e^{\lambda_1 t} \]

(Divide both sides by \(e^{\lambda_1 t} \)) \rightarrow

\[A \left[u_2 \right] = \lambda \left[u_2 \right] \rightarrow \]

\(\lambda \) is eigenvalue for \(A \) and \(\left[u_1 \right] \) is an associated eigenvector.

How to solve \(X' = AX \):

1.) Solve \(\det (A - \lambda I) = 0 \) to get distinct eigenvalues \(\lambda_1, \lambda_2 \).

2.) Solve \((A - \lambda I)X = 0 \) for \(X \) to get distinct eigenvectors \(V_1, V_2 \).

3.) The general solution in matrix form is

\[X = c_1 V_1 e^{\lambda_1 t} + c_2 V_2 e^{\lambda_2 t} \]