Math 17C

Kouba

Set Theory and Probability Rules

SET THEORY

DEFINITION: A set is a collection of objects.

$$\underline{EXAMPLES}: S = \{1, 2, 3, 7, 11, 20\}, A = \{a, b, r, s, w\}, B = \{red, blue, sun, snapple\}, P = \{\{X, Y\}, \{A, B, C, D\}\}, N = \{1, 2, 3, 4, 5, \cdots\}, E = \{\}$$

DEFINITION: Let A and B be sets.

1.) The <u>union</u> of sets A and B is $A \cup B = \{x : x \in A \text{ or } x \in B\}$.

2.) The *intersection* of sets A and B is $A \cap B = \{x : x \in A \text{ and } x \in B\}$.

EXAMPLE: Let $A = \{1, 2, 3\}$, $B = \{2, 3, 4, 5\}$, $C = \{4, 5\}$. Determine

 $A \cap B =$

 $A \cup B =$

 $B \cap C =$

 $B \cup C =$

 $A \cap C =$

 $A \cup B =$

 $\underline{DEFINITION}.$ A sample space , $\Omega,$ is the set of all possible outcomes.

 $\underline{EXAMPLE} \text{: Flip a coin twice and record } H \text{ or } T :$

Sample Space $\Omega = \{HH, HT, TH, TT\}$

<u>DEFINITION</u>: A set A is a <u>subset</u> of set B if each object in set A is also in set B. We write $A \subseteq B$.

FACT: Every set A is a subset of itself, i.e., $A \subseteq A$.

<u>FACT</u>: The empty set, $\{\ \} = \phi$, is a set containing no objects. The empty set is a subset of every set A, i.e., $\phi \subseteq A$.

<u>DEFINITION</u>: Let Ω be a sample space and let $A \subseteq \Omega$. Then A is called an <u>event</u> in Ω . The <u>complement</u> of A, written A^c , is the set of all objects which are in Ω but NOT in set A.

 $\underline{EXAMPLE}$: If $\Omega=\{HH,HT,TH,TT\}$ and $A=\{HH,HT,TH\}$, then $A\subseteq\Omega$ and $A^c=\{TT\}\subseteq\Omega.$

PROPERTIES of SETS:

1.) De Morgan's Laws:

a.)
$$(A \cup B)^c = A^c \cap B^c$$

b.)
$$(A \cap B)^c = A^c \cup B^c$$

2.)
$$(A^c)^c = A$$

3.)
$$\Omega^c = \phi$$
 and $\phi^c = \Omega$

PROBABILITY

RULES for PROBABILITY: Let Ω be a sample space and let sets A and B be events in Ω . Let n(A) represent the number of objects in set A. Then the following rules apply in the context of probability:

1.) For equally-likely outcomes the probability of events A and B are defined to be

$$P(A) = \frac{n(A)}{n(\Omega)}$$
 and $P(B) = \frac{n(B)}{n(\Omega)}$.

2.) $0 \le P(A) \le 1$ and $0 \le P(B) \le 1$

3.)
$$P(\phi) = \frac{n(\phi)}{n(\Omega)} = \frac{0}{n(\Omega)} = 0$$
 and $P(\Omega) = \frac{n(\Omega)}{n(\Omega)} = 1$

4.) If $A \cap B = \phi$, then $P(A \cup B) = P(A) + P(B)$.

5.) If
$$A \cap B \neq \phi$$
 , then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

6.) $P(A^c) = 1 - P(A)$.

 $\underline{EXAMPLE}$: Let $\Omega = \{HH, HT, TH, TT\}$ (all equally likely outcomes) and let

event A be "at least one head" $\longrightarrow A = \{HH, HT, TH\},\$

event B be "both are tails" $\longrightarrow B = \{TT\}$, and

event C be "a tail on the second flip" $\longrightarrow C = \{HT, TT\}.$

What is

- a.) P(A)
- b.) P(B)
- c.) P(C)