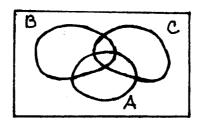
Math 17C Kouba

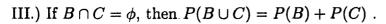
The Law of Total Probability

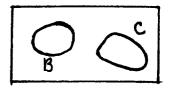


RECALL:

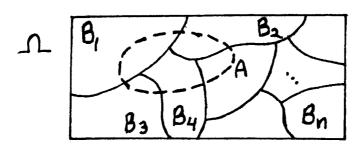
I.) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

II.)
$$P(B|C) = \frac{P(B \cap C)}{P(C)} \longrightarrow P(B \cap C) = P(B|C) \cdot P(C)$$





Let Ω be a sample space and let $B_1, B_2, B_3, \dots, B_n$ be a partition for Ω . Let A be an event in Ω . Then



$$A = A \cap \Omega$$

$$=A\cap (B_1\cup B_2\cup B_3\cup\cdots\cup B_n)$$
 (since B_1,B_2,B_3,\cdots,B_n are a partition for Ω)

$$= (A \cap B_1) \cup (A \cap B_2) \cup (A \cap B_3) \cup \cdots \cup (A \cap B_n) \quad \text{(by RECALL I.)} \quad \longrightarrow$$

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_n)$$
 (by RECALL III.)

$$= P(A\big|B_1) \cdot P(B_1) + P(A\big|B_2) \cdot P(B_2) + \dots + P(A\big|B_n) \cdot P(B_n) \quad \text{(by RECALL II.)},$$
 i.e.,

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A|B_i) \cdot P(B_i) .$$

This is called the Law of Total Probability.