1.) Assume that the function \(w(t) \) is your weight (in pounds) at time \(t \) (in months).

 a.) What are the units for the derivative \(w'(t) \)?
 b.) What is the meaning of \(w'(t) \) in this context?

2.) For each function \(y = f(x) \) solve \(f'(x) = 0 \) for \(x \) and set up a sign chart for \(f' \).

 a.) \(f(x) = \frac{x^3}{x - 2} \)
 b.) \(f(x) = (1/2)x - \cos x \) for \(0 \leq x \leq 2\pi \).

3.) Use the graph of \(f \) to sketch the graphs of \(f' \) and \(f'' = (f')' \), the derivative of the derivative.

 ![Graph of f, f', and f'']

4.) Use the graph of \(f' \) to sketch the graph of \(f \).

 ![Graph of f and f']

5.) Use \(\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \) to differentiate the function \(f(x) = \ln x \) \hspace{1cm} (HINT: Use properties of logarithms and the fact that \(\lim_{w \to 0} \left(1 + w\right)^{1/w} = e \).)