1.) Consider function \(f(x) = \frac{1}{x} + 3 \). Determine a function \(g(x) \) so that
 a.) \(f(g(x)) = x^3 + x^2 \)
 b.) \(f(g(x)) = 5f(x) \)
 c.) \(f(g(x)) = g(x) \)

2.) Write the volume of a cube as a function of its surface area. Use your result to find
the volume of a cube of surface area 24 square feet.

3.) Determine the domain and range for each function.
 a.) \(f(x) = \ln(x^2 - 4) \)
 b.) \(g(x) = \frac{e^x}{1000 + e^x} \)
 c.) \(h(x) = \frac{6}{3 - \sqrt{x^2 - 16}} \)
 d.) \(f(x) = \sqrt{\frac{(x - 1)(x - 2)}{(x + 3)(x + 2)}} \)

4.) Compute the following limits.
 a.) \(\lim_{x \to \frac{\pi}{4}} \tan x \)
 b.) \(\lim_{x \to \frac{\pi}{2}} \tan x \)
 c.) \(\lim_{x \to 8} \frac{x^{1/3} - 2}{x - 8} \)
 d.) \(\lim_{x \to 0^-} \sin(1/x) \)
 e.) \(\lim_{x \to -1} \frac{x^2 + 6x + 5}{x^3 + 1} \)
 f.) \(\lim_{x \to \infty} \frac{\sqrt{9x^2 + 16}}{x + 1} \)

5.) Use the Intermediate Value Theorem (IMVT) to verify that the following equation is
solvable. This is a writing exercise as well as a math exercise. Please be organized, clear,
and precise in your writing: \(x^3 = 10 + \sqrt{x} \)

6.) Determine the radius of the inscribed semi-circle.

7.) Plant 10 trees in 5 straight rows of four trees each.