Section 3.3

129:15 a.) If $a = -1$, $a = 2$ then $\lim_{x \to a} f(x)$ exists, but f is not continuous at a.

b.) If $a = 1$, $a = 3$ then f is continuous at a, but not differentiable at a since "corners" are not differentiable.

129:16 a.) If $a = 0$ then $\lim_{x \to a} f(x)$ exists, but f is not continuous at a.

b.) If $a = 1$, $a = 3$ then f is continuous at a, but not differentiable at a since "corners" are not differentiable.

129:17 a.) If $a = 5$ then $\lim_{x \to a} f(x)$ exists, but f is not continuous at a.

b.) If $a = 2$, $a = 3$ then f is continuous at a, but not differentiable at a. There are "corners" at $a = 0$ and $a = 4$. There is a vertical tangent line at $a = 2$.

129:18 a.) None

b.) If $a = 0$, $a = 2$, $a = 4$ then f is continuous at a, but not differentiable at a. There are "corners" at $a = 0$ and $a = 4$. There is a vertical tangent line at $a = 2$.

129:21 a.) $y = \sqrt{x}$

Domain: all $x \geq 0$

$y' = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2 \sqrt{x}}$

b.) $y' = \frac{1}{2x}$

Domain: all $x > 0$
\[f'(x) \approx 2, 0, -2, -1, 0, 1 \]

\[f'(2.03) \approx \frac{f(2.05) - f(2.03)}{2.05 - 2.03} = \frac{4.61 - 4.57}{0.02} = 2 \]

\[f'(3) \approx \frac{f(3.07) - f(3)}{3.07 - 3} \text{ iff } (0.07) + f'(3) = f(3.07) - f(3) \]

\[(0.07) + f'(3) \approx f(3.07) - 4 \text{ iff } f(3.07) \approx 3.965 \]