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(b}

FIGURE 3.49 A workeratM
walks to the right, puiling the
weight W upward as the rope
moves through the pulley P
(Example 6).

EXAMPLE 6  Figure 3.49a shows a rope running through a pulley*at P and bearing 5 4
weight W at one end. The other end is held 5 ft above the ground in the hand M of §
a worker. Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the worke, 4
is walking rapidly away from the vertical line PW at the rate of 4 ft/sec. How fast is the =
weight being raised when the worker's hand is 21 fi away from PW?

Solution . We let OM be the horizontal line of length x ft from a point O directly belay
the pulley to the worker’s hand M at any instant of time (Figure 3.49). Let h be the heigh; -
of the weight W above O, and let z denote the length of rope from the pulley P to the
worker’s hand. We want to know dh/dt when x = 21 given that dx/dt = 4. Note that the -
height of P above O is 20 ft because O is 5 ft above the ground. We assume the angleat ¢
is a right angle. :
At any instant of time ¢ we have the following relationships (see Figure 3.49b):

20—h+z=45 Total length of rope is 45 ft.

202 + X2 = z2, Angle ot O is a right angle.
If we solve for z = 25 + h in the first equation, and substitute into the second equation, '}
we have F

202 + x2 = (25 + K% 1
Differentiating both sides with respect to ¢ gives

dx_ dh
25 =225+ B,

and solving this last equation for dh/dt we find
di __x_ d -
dt 25+ hdt @ ;

Since we know dx/d, it remains only io find 25 + £ at the instant when x = 21, From §
Equation (1), g
202+ 212 = (25 + Ky

50 that
25+ h? =841, or 25+ h=29,
Equation (2) now gives

dh _ 21 , _84

ar =294 =35~ 29fi/sec

as the rate at which the weight is being raised when x = 21 ft. LE
3 i
1. Area Suppose that the radius rand area A = m+2 of a circle are 6. 1fx = y* — y and dy/dr = 5, then what is dx/dt when y = 2? ki

differentiable functions of 1. Write an equation that relates dA Jdt 7. If X+ y* =25 and dx/dr = -2, then what is dy/dt when

to dr/dt, x=3andy = -47 :
2. Surfacearea  Suppose that the radius rand surface area § = 4mr2 8. If x%' =4/27 and dy/dt = 1/2, then what is dx/dr when'§
of a sphere are differentiable functions of 1. Write an equation that x=27 S
relates dS/dt to dr/dr. 9. If L=Vx+y,de/dt =~1, and dy/dr=3, find dL/di}
3. Assume that y = 5x and drx/dr = 2. Find dy/dL. when x = S5and y = 12, ¥
4. Assume that 2x + 3y = 12 and dy/dt = —2. Find dx/dt. 10. If r+ 82 +4° = 12, dr/dt = 4, and ds/dt = —3, find du/dt r:

5. If y = x* and dx/dr = 3, then what is dy/df when x = —1? whenr = 3ands = I.
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If the original 24 m edge length x of a cube decreases at the rate
of 5 m/min, when x = 3 m at what rate does the cube’s

~ g, surface area change?

p. volume change?
A cube's surface area increases at the rate of 72 in?/sec. At what rate

 is the cube’s volume changing when the edge length is x = 3 in?

volume The radius r and height h of a right circular cylinder
are related 1o the cylinder's volume V by the formula V = wr?h.

a. How is dV/dt related to dh/dt if r is constant?

b. How is dV//dt related to dr/dr if h is constant?

¢, How is dV/dr related to dr/df and dh/dy if neither r nor h is
constant?

Volume The radius r and height & of a right circular cone are

" related to the cone’s volume V by the equation V = (1/3)wrh.

a. How is dV/dt related to dh/dt if r is constant?
b. How is dV/ds related to dr/dr if & is constant?

c. How is dV/dt related to dr/dr and dh/dr if neither r nor h is
constant?

. 15. Changing voltage The voltage V (volts), current / (amperes),

and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation V = IR. Suppose that V is
increasing at the rate of 1 voit/sec while / is decreasing at the
rate of 1,/3 amp/sec. Let ¢ denote time in seconds.

L VL

R

8. What is the value of dV/dt?
b. What is the value of df/ds?
¢. What equation relates dR/dr to dV/dr and di/dt?

d. Find the rale at which R is changing when V = 12 volis and
{ = 2 amps. Is R increasing, or decreasing?

Electrical power The power P (watts) of an electric circuit is

related to the circuit’s resistance R {ohms) and current I (amperes)

by the equation P = RI%,

8. How are dP/dt, dR/dt, and di{dr related if none of P, R, and
I are constant?

b. How is dR/dr related to df/d if P is constant?

- Distance Let x and y be differentiable functions of ¢ and let

= Va2 4+ y* be the distance between the points {x,0) and
(0, y) in the xy-plane.
a. How is ds/d¢ related to dx/dr if y is constant?

b. How is ds/dt related to dx/dt and dy/dt if neither x nor y is
constant?

€ How is dx/dt related to dy,/dr if 5 is constant?

- Diagonals [fx, y, and z are lengths of the edges of a rectangular

box, the common length of the box's diagonmals is s=
Vat £ y2 + 2,

19.

20.

21

22,
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a. Assuming that x, y, and z are differentiable functions of 1,
how is ds/dt related to dx/dt, dy/dt, and dz/dt?

b. How is ds/dt related to dy/dt and dz/dt if x is constant?
¢. How are dx/dt, dy/dr, and dz/dr related if s is constant?

Area The area A of a triangle with sides of lengths a and b
enclosing an angle of measure @ is

e 1,
A= 2absm [

a. How is dA/dr related to d6/dr if a and b are constant?
b. How is dA /ds related to d6 /dt and da/dt if only & is constant?

¢. How is dA /dt related to d8/dt, da/dt, and db/dt if none of
a, b, and @ are constant?

Heating a plate When a circular plate of metal is heated in an
oven, its radius increases at the rate of 0.01 cm/min. At what rate
is the plate’s area increasing when the radius is 50 cm?

Changing dimensions in a rectangle The length { of a rectan-
gle is decreasing at the rate of 2 cm/sec while the width w is
increasing at the rate of 2cm/sec. When { = 12cem and
w = 5 cm, find the rates of change of (a) the area, (b) the perim-
eter, and (¢} the lengths of the diagonals of the rectangle. Which
of these quantities are decreasing, and which are increasing?
Changing dimensions in a rectangular box Suppose that the
edge lengths x, y, and z of a closed rectangular box are changing
at the following rates:

dx _ dz _
dt dt

Find the rates at which the box's {a) volume, (b) surface area, and
{c) dingonal length s = Va? + y? + 22 are changing at the
instant whenx =4,y = 3,and z = 2. |

d
= | m/sec, d—J: = -2 m/sec, 1 m,/sec.

. A sliding ladder A 13-ft ladder is leaning against a house when

its base starts to slide away (see accompanying figure). By the
time the base is 12 ft from the house, the base is moving at the
rate of 5 ft/sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

c. At what rate is the angle 8 between the ladder and the ground
changing then?

. Commercial air traffic Two commercial airplanes are flying

at an altitude of 40,000 £t along straight-line courses that intersect
at right angles. Plane A is approaching the intersection point at a
speed of 442 knots (nautical miles per hour; a nautical mile is
2000 yd). Plane B is approaching the intersection at 481 knots. At
what rate is the distance between the planes changing when A is 5
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26

s

27.

29.

30.

31.

32.

nautical miles from the intersection point and B is 12 nautical
miles from the intersection point?

. Flying a kite A girl flies a kite at a height of 300 fi, the wind car-

rying the kite horizontally away from her at a rate of 25 ft/sec. How
fast must she let out the string when the kite is 500 ft away from her?

Boring a cylinder The mechanics at Lincoln Automotive are
reboring a G-in.-deep cylinder to fit a new piston. The machine
they are using increases the cylinder's radius one-thousandth of
an inch every 3 min. How rapidly is the cylinder volume increas-
ing when the bore (diameter) is 3.800 in.?

A growing sand pile Sand falls from a conveyor belt at the rate
of 10 m?/min onto the top of a conical pile. The height of the pile
is always three-eighths of the base diameter. How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer
in centimeters per minute.

» A draining conical reservoir Water is flowing at the rate of

50 m*/min from a shallow concrete conical reservoir (vertex

down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling
when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then?
Answer in centimeters per minute.

A draining hemispherical reservoir Water is flowing at the

rate of 6 m*/min from a reservoir shaped like & hemispherical bowl

of radius 13 m, shown here in profile. Answer the following ques-

tions, given that the volume of water in a hemispherical bow] of

radius Ris V = (7/3)y*(3R ~ y) when the water is y meters deep.

Center of sphere

Water level ]

a. At what rate is the water level changing when the water is
8 m deep?
b. What is the radius r of the water’s surface when the water is
y m deep?
¢, At what rate is the radius r changing when the water is 8 m deep?
A growing raindrop Suppose that & drop of mist is a perfect
sphere and that, through condensation, the drop picks up moisture
at a rate proportional to its surface area, Show that under these
circumstances the drop’s radius increases at a constant rate.
The radius of an inflating balloon A spherical balloon is
inflated with helium at the rate of 100 ft*/min. How fast is the
balloon’s radius increasing at the instant the radius is 5 ft? How
fast is the surface area increasing?
Hauling in a dinghy A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the bow.
The rope is hauled in at the rate of 2 ft/sec.
a. How fast is the boat approaching the dock when 10 ft of rope
are out?
b. At what rate is the angle 8 changing at this instant (see the
figure)?

Ring at edge

33. A balloon and a bicycle A balloon is rising vertically above 5 §

level, straight road at a constant rate of 1 ft/sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constan
rate of 17 ft/sec passes under it. How fast is the distance s(;)
between the bicycle and balloon increasing 3 sec later? ?

0 |t ;r(:)

34. Making coffee Coffee is draining from a conical filter into a4

cylindrical coffeepot at the rate of 10 in®/min,

a. How fast is the level in the pot rising when the coffee in the
cone is 5 in. deep?

b. How fast is the level in the cone falling then?

i
! ,

vy - How fast

is this

level fnl!i‘ng? 3

How fast
is this

level rising?
6" E

Ny
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. Cardiac output In the late 1860s, Adolf Fick, a professor of
3 physiology in the Faculty of Medicine in Wiirzberg, Germany,
developed one of the methods we use today for measuring how
much blood your heart pumps in a minute. Your cardizc output as
ybu read this sentence is probably about 7 L/min, At rest it is
likely to be a bit under 6 L/min, If you are a trained marathon
rdnner running & marathon, your cardiac output can be as high as

" 30 L/min.

Your cardiac output can be caiculated with the formula

Y=

| where @ is the number of milliliters of CO, you exhale in a minute
. and D is the difference between the CO, concentration (ml/L) in

the blood pumped to the lungs and the CO, concentration in the
blood returning from the lungs. With @ = 233 ml/min and
D =97~ 56 = 4l ml/L,

233 ml/min
~ 4lml/L

fairly close to the 6 L/min that most people have a1 basal (rest-
ing) conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan
College of Medicine, East Tennessee State University.)

Suppose that when @ = 233 and D = 41, we also know
that D is decreasing at the rate of 2 units a minute but that Q
remains unchanged. What is happening to the cardiac output?

Moving along a parabola A particle moves along the parabola
y = &% in the first quadrant in such a way that its x-coordinate
(measured in meters) increases at a steady 10 m/sec. How Fast is
the angle of inclination & of the line joining the particle to the
origin changing when x = 3 m?

= 5.68 L/min,

3 7. Motion in the plane The coordinates of a particle in the metric

xy-plane are differentiable functions of time ¢ with dx/dt =
—1 m{secand dy/dt = —5 m/sec. How fast is the particle’s dis-
tance from the origin changing as it passes through the point
(5,127

38. Videotaping a moving car You are videotaping & race from a

stand 132 ft from the track, following a car that js moving at
180 mi/h (264 ft/sec), as shown in the accompanying figure.
How fast will your camera angle 8 be changing when the car is
right in front of you? A half second later?

39.

40.

41.

42.

43.
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A moving shadow A light shines from the top of a pole 50 ft
high. A ball is dropped from the same height from a point 30 ft
away from the light. (See accompanying figure.) How fast is the
shadow of the ball moving along the ground 1/2sec later?
(Assume the ball folls a distance s = 16 ft in rsec.)

v Ball attime t = 0

1/2 sec later

.
50-ft )
pole |
]
'
i
.~L- ' I Shadow
L = »x
2 0 : 3._ﬂ:L - 2t hd x(r)_ 4

A building’s shadow On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft long. At the moment in question, the angle & the
sun makes with the ground is increasing at the rate of 0.27°/min.
At what rate is the shadow decreasing? (Remember to use radians.
Express your answer in inches per minute, (o the nearest tenth.)

x'\"*.-.. £ !
Ak

A melting ice layer A spherical iron ball 8 in. in diameter is
coated with & layer of ice of uniform thickness. If the ice melts at
the rate of 10in’/min, how fast is the thickness of the ice
decreasing when it is 2 in. thick? How fast is the outer surface
area of ice decreasing?

Highway patrol A highway patrol plane flies 3 mi above a
level, straight road at a steady 120 mi/h. The pilot sees an
oncoming car and with radar determines that at the instant the
line-of-sight distance from plane to car is 5 mi, the line-of-sight
distance is decreasing at the rate of 160 mi/h. Find the car's
speed along the highway.

Baseball players A baseball diamond is a square 90 ft on a
side. A player runs from first base to second at a rate of 16 ft/sec.

4. At what rate is the player’s distance from third base changing
when the player is 30 ft from first base?

b. At what rates are angles 8, and 8, (see the figure) changing
at that time?
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€. The player slides into second base at the rate of 15 ft/sec. At 44. Ships Two ships are steaming straight away from a poim 0 A T
what rates are angles 8, and 8, changing as the player along routes that make a 120° angle. Ship A moves at 14 knos
touches base? (nautical miles per hour; a nautical mile is 2000 yd). Ship B

moves at 21 knots. How fast are the ships moving apart when
OA = 5 and OB = 3 nautical miles?

45. Clock’s moving hands At what rate is the angle between 3
clock’s minute and hour hands changing zt 4 o’clock in the after.
noon?

46. Oil spill  An explosion at an oil rig located in gulf waters causes
an elliptical oil slick to spread on the surface from the rig. The slick
is a constant 9 in. thick. Afier several days, when the major axis of
the slick is 2 mi long and the minor axis is 3/4 mi wide, it is deter-
mined that its length is increasing at the rate of 30 fihr, and it
width is increasing at the rate of 10 ft/hr. At what rate (in cubic feet
per hour) is oil flowing from the site of the rig at that time?

3. 1 ]. Linearization and Differentials

Sometimes we can approximate complicated functions with simpler ones that give the 4
accuracy we want for specific applications and are easier to work with. The approximating
functions discussed in this section are called linearizations, and they are based on tangent
lines. Other approximating functions, such as polynomials, are discussed in Chapter 10,
We introduce new variables dx and dy, called differentials, and define them in a way that
makes Leibniz’s notation for the derivative dy/dx a true ratio. We use dy to estimate error in _
measurement, which then provides for a precise proof of the Chain Rule (Section 3.6). '

Linearization

As you can see in Figure 3.50, the tangent to the curve y = 2 lies close to the curve near ',
the point of tangency. For a brief interval to either side, the y-values along the tangent line

SN

y = s and its tangenty = 2x — | at (1, 1), Tangent and curve very close near (1, 1). i ;

1.2 1.003 &

0.8 1/1.2 0.997 : i
0.8 0.997 i

Tangent and curve very close throughout Tangent and curve closer still. Computer ¥
entire x-interval shown, screen cannot distinguish tangent from b
curve on this x-interval. i

FIGURE 3.50 The more we magnify the graph of a function near a point where the func- .
tion is differentiable, the flatter the graph becomes and the more it resembles its tangent. i
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Equation (3) expresses the increase in mass that results from the added velocity v.

e E—— |
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g

T~ |1+ 4(E)] - (1)

m = mg + %mouz(c%) 3

Converting Mass to Energy

Equation (3) derived in Example 9 has an important interpretation. In Newtonian physics,
(1/2ymyv? is the kinetic energy (KE) of the object, and if we rewrite Equation (3) in the

(m —my)c® = %movz,

(m = m)c® ~ gmev? = Lmgu ~ Ly 2 = A ),

(Am)c? = A(KE).

So the change in kinetic energy A(KE) in going from velocity 0 to velocity v is approxi-
mately equal to (Am)c?, the change in mass times the square of the speed of light. Using
¢ = 3 X 10* m/sec, we see that a small change in mass can create a large change in

4 =3, find the linearization Lix) of f(x) at x = a,
_-!'l. f)=x-2x 43, g=2
2f)=Va¥9, g=-4
3 fwscel ooy
4 fx) =V, a=-8
5./ =tanx, a=4
. 6 ?ommon linear approximations at x = 0 Find the lineariza-
R tions of the following functions at x = 0.

B L osing cosx  ctanx d & e In(l+y)

B Linearization for Approximation
i . " Exerciseg 7-14, find a linearization at a suitably chosen integer near
& %which the given function and jts derivative are easy to evaluate,

_ L=t a=qy
B 5 fw= 400
> =22 r3m3 4= -09

A
1{“’: l]. f(x) = \3/;' a= 8.5

o

)

h

2. f) =

I3. fx)=¢>* g= =0.1
4. f(x} =sin7'x, g= wf12

15. Show that the linearization of fW=00+x*at x=0is
Lix) =1 + kx,

16. Use the linear approximation (I+x*= 1+ tofind an
approximation for the function J(x) for values of x near zero.

8 f() = (1 — xp b. fe) = ;2

d fx) =VZ+ 22

2
3 X
¢ o=

17. Faster than a calculator Use the approximation (1 + x)k =
1 + kx to estimate the following.

a. (1.0002)% b. V1.009
18. Find the linearization of f) = Vx+1+sinxatx = 0. How

is it related to the individual linearizations of \x + [ and sinx
atx =07

a=13

e f(x) = (4 + 312
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Derivatives in Differential Form
In Exercises 19-38, find dy.

19, y =2 - 3Vx 20. y=xV1 -2

_ & L 2E
2y=ri 2y=30+va
23. 22 +xy—x=0 U -4l -y=0
25. y = sin (5Vx) 26. y = cos (x?)
27. y = 4uan (x*/3) 28. y =sec(x® — 1)
29 y=3csc(1-2vx) 30 *2col(\}.)
31 y=¢Vr 32y =g

BD.y=In(l +29) .

35 y = tan (") 36. y = cot™! (—) + cos™! 2
37, y =secl(e™

Approximation Error
In Exercises 39—44, each function f(x) changes value when x changes
from x5 to x; + dx, Find

a. the change Af = f(xg + dx} — f(x);

b. the value of the estimate df = f'(x;) dx; and
¢. the approximation error |Af — df].

y

3 y=jy
1
Af = f(xg + dx) — f(xg)

)
(xo.f(xu))/ df = fxy) d

1 dr |
‘Tangent : :
1 1 X
0 X xg + dx
I fW=x2+2 =1, dr=01
40. fx) =22+ 4dx~3, x=-1, de=0.1
4. f = ~x x=1, de=0l
42, fx) =% x=1, de=0.1
4. f=x" =05 dc=0lI
M, f)=x—22+3 x=2 de=01

Differential Estimates of Change

In Exercises 45-50, write a differentinl formula that estimates the

given change in volume or surface area.

45, The change in the volume V = (4/3)mr? of a sphere when the
radius changes from ry to iy + dr

46, The change in the volume V = x* of a cube when the edge
lengths change from x; to x5 + dx

47. The change in the surface area § = 6x? of a cube when the edge
lengths change from xp to xp + dx

48. The change in the lateral surface area § = wrVr? + K of aright
circular cone when the radius changes from #, o ry + dr and the
height does not change

49.

50.

Applications

51.

52,

53.

55,

56.

58.

59,

60,

61.

. Estimating height of a building A surveyor, standing 30 fi ;

The change in the volume V = % of a right circular cylinde;
when the radius changes from 7 to 5, + dr and the height does 4
not change

The change in the lateral surface area § = 27rrh of a right cirey.
lar cylinder when the height changes from kg to by + dh and the
radius does not change

The radius of a circle is increased from 2.00 to 2.02 m.
a. Estimate the resulting change in area.
b. Express the estimate as a percentage of the circle's original areq,

The diameter of a tree was 10 in. During the following year, the
circumference increased 2 in. About how much did the wee's §
diameter increase? The tree’s cross-sectional area?

Estimating volume Estimate the volume of material in a cylin- .
drical shell with length 30 in., radius 6 in., and shell thickness 0.5 in.

from the base of a building, measures the angle of elevation to the
top of the building to be 75°. How accurately must the angle be “§
measured for the percentage error in estimating the height of the
building to be less than 4%? '

The radius 7 of a circle is measured with an error of at most 2%. 3
What is the maximum corresponding percentage error in comput-
ing the circle's

a. circumference? b. area?

The edge x of a cube is measured with an error of at most 0.5%.
What is the maximum corresponding percentage error in compul- 3§
ing the cube’s :

a. surface area? b. volume?

Tolerance The height and radius of a right circular cylinder are 3
equal, so the cylinder's volume is V = s/, The volume is to be &
calculated with an error of no more than 1% of the true value.
Find approximately the greatest error that can be tolerated in the 3
measurement of A, expressed as a percentage of f. .

[#
o

Tolerance
a. Aboul how accurately must the interior diameter of a
10-m-high cylindrica) storage tank be measured to calculate
the tank’s volume to within 1% of its true value? x
b. About how accurately must the tank’s exterior diameter be = ¥
measured to calculate the amount of paint it will take to paint #
the side of the tank to within 5% of the true amount? _
The diameter of a sphere is measured as 100 = 1cm and the
volume is calculated from this measurement, Estimate the pcf'
centage error in the volume calculation. §|
Estimate the allowable percentage error in measuring the diameter i
of a sphere if the volume is to be calculated correctly to within 3%. §
The effect of flight maneuvers on the heart The amount of
work done by the heart’s main pumping chamber, the left ventri-} b
cle, is given by the equation s

o ThE
Sl

sl

bt e i ol el

Feliai

. wa=py+ Y
2

1=kt ! N



- where W is the work per unit time, P is the average blood pres-

* qure, Vis the volume of blood pumped out during the unit of time,
5 (“delta”) is the weight density of the blood, v is the average
velocity of the exiling blood, and g is the acceleration of gravity.
When P, V, 8, and v remain constant, W becomes a function
of g, and the equation takes the simplified form

W=ag+ g (a, b constant).

As a member of NASA's medical team, you want to know how
sensitive W is to apparent changes in g caused by flight mancuvers,
and this depends on the initial value of g. As part of your investiga-
tion, you decide to compare the effect on W of a given change dg
en the moon, where g = 5.2 ft/sec?, with the effect the same
change dg would have on Earth, where g = 32 ft/sec?. Use the
simplified equation above 1o find the ratic of dW,,,n to dWegne

. Drug concentration The concentration C in milligrams per
milliliter (mg/ml) of a certain drug in a person’s bloodstream ¢
hrs after a pill is swallowed is modeled by

4t
=1 4+ — LE —I:I.Dﬁ!.

¢ 1+6 ¢

Estimate the change in concentration when ¢ changes from 20 10

30 min.

63. Unclogging arteries The formula V = ks, discovered by the
physiologist Jean Poiseuille (1797-1869), allows us to predict how
much the radius of a partially clogged artery has to be expanded in
order to restore normal blood flow. The formula says that the vol-
ume V of blood flowing through the artery in a unit of time at a
fixed pressure is a constant & times the radius of the artery to the
fourth power. How will a 10% increase in r affect V7

. Measuring acceleration of gravity When the length L of a
clock pendulum is held constant by controlling its temperature,
the pendulum’s period T depends on the acceleration of gravity g.
The period will therefore vary slightly as the clock is moved from
place to place on the earth’s surface, depending on the change in
& By keeping track of AT, we can estimate the variation in g
from the equation T = 2m(L/g)"/? that relates T, g, and L.

a. With L held constant and g as the independent variable, cal-
culate 47 and use it to answer parts (b) and (c).

b. [f g increases, will T increase or decrease? Will a pendujum
clock speed up or slow down? Explain.

£ A clock with a 100-cm pendulum is moved from a location
where g = 980 cm/sec? 10 a new location. This increases the
period by dT = 0.001 sec. Find dyg and estimate the value of
& at the new location.

65. Quadratic approximations

A Let Q(x) = by + by(x — @) + by(x — a)* be a quadratic
approximation to f(x) at x = a with the properties:
i) Qa) = fla)
i) Q'(a) = f'(a)
iii) @"a) = f"(a).
Determine the coefficients by, b,, and by,

b. Find the quadratic approximation to f(x) = 1 /(1 — x) at
=0
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€ Graph f(x) = 1 /{1 — x) and its qundratic approximation at
X = 0. Then zoom in on the two graphs at the point (0, 1).
Comment on what you see.
Find the quadratic approximation to g(x) = 1/xatx = 1.
Graph g and its quadratic approximation together. Comment
on what you see,
e. Find the quadratic approximation to A(x) = V1 + x at
x = 0. Graph k and its quadratic approximation together.
Comment on what you see.

f. What are the linearizations of £, g, and 4 at the respective
points in parts (b), (d), and (e)?

66. The linearization is the best linear approximation Suppose
that y = f(x) is differentiable at x=a and that g(x)=
m{x = a) + c is a linear function in which m and ¢ are constants.
If the error E(x) = f(x) — g(x) were small enough near x = a,
we might think of using g as a linear approximation of f instead
of the linearization L(x) = f(a) + f'(a)(x — a). Show that if we
impose on g the conditions

l. E@)=0

. B
2 l'_‘}::—a‘

[T]d.

The approximation error is zero at x = a.

The error is negligible when compared
with x ~ a.

then g(x} = f(a) + f'(a}x — &). Thus, the lnearization L{x)
gives the only linear approximation whose error is both zero at
x = a and negligible in comparison with x — a.

The linearization, L(x):
¥y =fla) + fla){x — a)

Some other linear
approximation, g(x):

\ y=mix-a)+c
¥ = fix) |
(ﬂ.f(ﬂ)) 1

I

!

[l
a

67. The linearization of 2*

a. Find the linearization of f(x) = 2% at x = 0. Then round its
coefficients to two decimal places.

b. Graph the linearization and function together for
—3=x=3md-lsx=]|

68. The linearization of log,x

a. Find the linearization of f(x) = log;x at x = 3. Then round
its coefficients to two decimal places.

b. Graph the linearization and function together in the window
0sx=8and2=x=4

COMPUTER EXPLORATIONS

In Exercises 69-74, use a CAS (o estimate the magnitude of the error
in using the linearization in place of the function over a specified
interval /. Perform the following steps:

a, Plot the function f over /.
b. Find the linearization L of the function at the point a.
¢. Plot f and L together on a single graph.
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FIGURE 4.8 The extreme values of

ftx) =
x = ¢and x = ¢ (Example 3).

10x(2 — Inx) on [1, 2] occur at

y=x3 -2=x=3
Absolute maximum,
Local also a local maximum
maximum 2
1 =
4 t 1 1 ' R
-2 -1 0 1 2 3

Absolute minimum;
also a local mirimum

FIGURE 4|..9 The extreme values of
FG) =x*Pon [=2,3] oceuratx = 0
and x = 3 (Example 4).

Chapter 4: Applications of Derivatives

G s
gt T

Solution Figure 4.8 suggests that f has its absolute maximum value near x =3 andj 5§
absolute minimum value of 0 at x = ¢%. Let's verify this observation,
We evaluate the function at the critical points and endpoints and take the largest and

smallest of the resulting values.
Ox(l) =10(1 ~ lnx) 1
X : |

x Ll\t
tn

The first derivative is

Fi() =102 - Inx) -

The only critical point in the domain [ 1, ¢2] is the point x = e, where In x = 1. The vaj. & i

ues of f at this one critical point and at the endpoints are a9 gocu
Critical point value: fle) = 10e _". FEh
Endpoint values: Ff(1)=102 - In1) = 20

f(e®) = 1062 — 2Ine) = 0.
We can see from this list that the function’s absolute maximum value is 10e = 27.2; it 8f
occurs at the critical interior point x = e. The absolute minimum value is 0 and occurs at §
the right endpoint x = €2, 8
= x23 on the§

3

EXAMPLE 4
interval [—2,3].

Find the absolute maximum and minimum values of f(x)

Solution We evaluate the function at the critical points and endpoints and take the larg- ;
est and smallest of the resulting values.
The first derivative

2

n) = 25713 =
f'm=3 ¥

has no zeros but is undefined at the interior point x = 0. The values of f at this one criticel .1-__.:- :
point and at the endpoints are b
Critical point value: fl0) =
e = (2P0 = Va
f3) = @y = V5.
We can see from this list that the function’s absolute maximum value is V9 = 2.08, 2 '[
it occurs at the right endpoint x = 3. The absolute minimum value is 0, and it occurs &
the interior point x = 0 where the graph has a cusp (Figure 4.9).

Endpoint values:

Finding Extrema from Graphs

In Exercises 1-6, determine from the graph whether the function has 1
any absolute extreme values on [a,b]. Then explain how your

answer is consistent with .Theorem 1
1, vy 2.

¥ = hix)

>

S s | —— s i

y=f) & Il
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6. In Exercises 15-20, sketch the graph of each function and determine
y=g(x) T whether the function has any-absolute extreme values on its domain,
. ¥ = 8x) Explain how your answer is consistent with Theorem 1.
\-‘ 15 f) =z, -1<x<2
0\/_‘ .
.y = , —l<x <
16. v 742 I<x<|]
1 ! » X 1 ! 1 - X “—X, 0 =x < l
b 0 b ) = '
¢ e 17. 8x) {x—l. lsxs<2

1
» “I=x<o0

Vi, 0sx=4
19, y = 3sinx, 0<x<29¢
x+]l, =l=x<0

18, A(x) =

20. f(x) =

cos x, 0<x5%

Absolute Extrema on Finite Closed Intervals

In Exercises 21-40, find the absolute maximum and minimum values
of each function on the given interval. Then graph the function. Iden-
tify the points on the graph where the absolute extrema occur, and
include their coordinates.

21, f(x)=§x—s, —2sxr=3

2. f)=-x—-4, -4=syx=]
B f=x2-1, -1sx=2
AU fxy=4-x, -2=y=<]

25, F(x) = -xlz. 05sxs2

0 26. F(x) =—%, ~2=x=-]

0 27 hix) =V, -1 =x=38

3 ¢ =3 28 h(r) = —328, ~1 sz

- 14, 29. g(x)=V4 -2, -2=x=]|
il & £ g =-V5-2, —Visz=g

=]
L=~ ]

does not exist a does not exist 31 F(6) = sing, - T 9= Sar
¢ b does not exist oD 6
AN g el 2 f6) = o, -TspsT
33. g(x) = cscx, 73—7 sxr=< 23_7r
:’ ] E \ 34. g(x)r-'_'secx. —%r-s.rs%
1 ] 1 = - iy
a b c a b r:\ 35 fn=2 l[]. 1=sr=3
3. f=|t-5], 4s¢=7

(@) ®) I g)=xe”, -l=x=<1
B hx)=In(x+1), 0=<x=3

: \/E\ 39. f(x)ﬁ%'i'lnx. 05=x=4
!

|

i

! 40 g =e*, -2=yx=|
[

() @
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In Exercises 4144, find the function’s absolute maximum and mini-
mum values and say where they are assumed,

A, fy=x" -1=x=38

2, fx)=x" ~1=sx=8

43. g(0) =%, -N=p=|

a4, W) =301, -27=8=<3

Finding Critical Points

In Exercises 45-52, determine all critical points for each function.
45. y=x'—6x + 7 46, f(x) = 6x* — X°

47, f(x) = x(4 — x 48. g(x) = (x — 1)z — 3P

49, y=x 42 50.f(x)=x—':2-—2
51 y=x - 32V% 52 gy =V - 2

Finding Extreme Values

In Exercises 53-68, find the extreme values (absolute and local) of the
function over its natural domain, and where they occur,

5. y=22-8x+9 5. y=x3-2r+ 4

55. y=x3+2 -8 +5 56. y = x¥x — 5

57. y=V@ =1 58. y=x - 4Vx
]

59, y= —=— 60. y=Vit -2

YR y

_ X _ x+1
6L y= 8 y= it
6. y=e&+ ¢+ 4. y=¢" — ¢~
65. y=xnx 66, y = x2Inx
67. y = cos™! (x?) 68. y = sin" (")

Local Extrema and Critical Points
In Exetcises 69-76, find the critical points, domain endpoints, and
extreme values (absolute and local) for each function.

69. y = xx + 2) 70. y = 322 ~ 3)

71 y=xV4— x2 2. y=xV3-x
4-2x, x=1 _J3-x X<
73.y_{x+l. x> 1 74'y“{3+2x—x2. xz0

75 _{—xz—Zt+4, r=1
YT R br-a, x>1
1, 1,15
For g

= 62 + 8y,

x=1
76. y =

x>1

In Exercises 77 and 78, give reasons for your answers.
77. Let f(x) = (x — 2)?3,
a. Does f'(2) exist?
b. Show that the only local extreme value of foccursat x = 2,

¢. Does the result in part (b) contradict the Extreme Value
Theorem?

d. Repeat parts (a) and (b) for f(x) = (x — a)?, replacing 2
by a.
78. Let f(x) = |x® - 9x].
a. Does f'(0) exist?
c. Does f'(—3) exist?

b. Does f'(3) exist?
d. Determine all extrema of f.

Graph the functions in Exercises 87-90. Then find the extreme valuéss

Theory and Examples ; -

79. A minimum with no derivative The function f(x) = x| hag S
an absolute minimum value at x = 0 even though f is not differ.
entiable at x = 0. Is this consistent with Theorem 27 Give rea-
sons for your answer.

80. Even functions If an even function f(x) has a local maximuy  #

value at x = ¢, can anything be said about the value of I at
= =c? Give reasons for your answer. f

81. Odd functions If an odd function &(x} has a local minimyp |
value at x = ¢, can anything be said about the value of Zat
x = =c? Give reasons for your answer.

82. No critical points or endpoints exist We know how to find the |
extreme values of a continuous function f(x) by investigating is 3
values at critical points and endpoints. But what if there are no cri 3
cal points or endpoints? What happens then? Do such functions §
really exist? Give reasons for your answers.

83. The function
W(x) = x(i0 — 2x)(16 - 24),
models the volume of a box.

a. Find the extreme values of V.

b. Interpret any values found in part (a) in terms of the volume
of the box. g

84. Cubic functions Consider the cubic function
fW=ad+ b+ ex+ d

0<x<5,

8. Show that f can have 0, 1, or 2 critical points. Give examples
and graphs to support your argument.

b. How many local extreme values can f have?

85. Maximum height of a vertically moving body The height of 8 g
body moving vertically is given by §

= —%gr2 + wyt + 5, g>0,

with 5 in meters and 7 in seconds. Find the body's maximum height

86. Peak alternating current Suppose that at any given time f (:I
seconds) the current { (in amperes) in an alternating current le
cuitis i = 2 cos t + 2 sin +. What is the peak current for this cit§
cuit (largest magnitude)? i

of the function on the interval and say where they occur. ..:'

8. j)=|x— 2|+ |x+3|, -5=x=<5

8. gx)=|x-1~-|x-5, —2=x=7

89. M) = |x+2| - |x -3} ~w<r<o

9. kx) =[x+ 1]+ |x-3], ~0o<x<oo

COMPUTER EXPLORATIONS 7

In Exercises 91-98, you will use a CAS to help find the absoluff

extrema of the given function over the specified closed interval. P&
form the following steps.

s
8. Plot the function over the interval to see its general behavior ther®:
b .

Find the interior points where f' = 0. (In some exercises, ;
may have to use the numerical equation solver to approxima“_
solution.) You may want to plot f' as well,

¢. Find the interior points where § does not exist.



= he endpoints of the interval.

£ identify where they occur.

1]

be.”
u

¥

3 Evaluate the function at all points found in parts (b) 2nd (c) and at
i, Find the function’s absolute extreme values on the interval and

S f0) = ¥ — B+ dx +2, [-20/25,64/25]
b [0 =t A0 k1, [-3/4,3)
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M. flx) =2+ 2~ 327 [-1,10/3]
95. f(x) = Vix + cosx, [0,2n]

96. f{x) = 3" — sinx + %, {0.27]
97. fx) = mxle™ R, [0,5)
98. f(x) = In(2x + xsinx), {1,15]

i i i = e o s e e T e PR ol WL e

y=f(x}

A

3 b\q. -

| FIGURE 4.10 Rolle’s Theorem says
i \ifiat 0 differentiable curve has at least one
‘:1 brizontal tangent between any two points
" Where it crosses a horizontal line. It may

‘* € just one (a), or it may have more (b).

oo HISTORICAL BIOGRAPHY
L Michel Rojje
(1852-1719)
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i--,2 The Mean Value Theorem

We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives
over an interval, how are the functions related? We answer these and other questions in
this chapter by applying the Mean Value Theorem. First we introduce a special case,
known as Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle’s Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-
ferent points, there is at least one point between them where the tapgent to the graph is
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result,

THEOREM 3—Rolle’s Theorem Suppose that y = f(x) is continuous over
the closed interval [a, b] and differentiable at every point of its interior (a, b).
If fla) = f(b), then there is at least one number ¢ in (a, b) at which f'(c) = 0.

Proof Being continuous, f assumes absolute maximum and minimum values on
[a. &] by Theorem 1. These can occur only

1. atinterior points where f’ is zero,
2. atinterior points where f* does not exist,
3. atendpoints of the function’s domain, in this case a and b,

By hypothesis, f has a derivative at every interior point. That rules out possibility (2),
leaving us with interior points where f* = 0 and with the two endpoints a and &,
If either the maximum or the minimum occurs at a point ¢ between a and b, then
f'(c) = 0 by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.
If both the absolute maximum and the absolute minimum occur at the endpoints, then
because f(a) = f(b) it must be the case that fisaconstant function with f(x) = fla) = f(b)

for every xe [a, b]. Therefore f'(x) = 0 and the point ¢ can be taken anywhere in the
interior (a, b). B

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph
may not have a horizontal tangent (Figure 4.11).
Rolle’s Theorem may be combined with the Intermediate Valye Theorem to show

when there is only one real solution of an equation f(x) = 0, as we illustrate in the next
example.

EXAMPLE 1 Show that the equation

2 +3x+1=0

has exactly one real solution.
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4.2
inhecking the Mean Value Theorem

d the value or vaiues of c that satisfy the equation

O = f@ _
e = SO

ok
= the conclusion of the Mean Value Theorem for the functions and
© i rvals in Exercises 1-8.

F' f(x) =x2+ 2¢— 1, [0.1] )
i f(x) = x2f3‘ [0. l]
1 1

s -a+ i [32]
rf(x) = Vx — 1, [1,3]
5, f(x) = sin-lx, [-l, l]
L6 =l D, [24]
G f0=F -2 [-1.2]
B {x’. -2sx=0
8. glx) = 2 0<x=2

Which of the functions in Exercises 9—14 satisfy the hypotheses of the
Mean Value Theorem on the given interval, and which do not? Give
easons for your answers.

9, fy = 2P, [-1,8]
10 S0 =55, [01]

L f(x) = Vx(l —x), [0,1]
A Sin—'t, -Tr=x<(
mE O OERS

i v 0, x=0

2 -z -2=xr=-]
13 = ’
g S0 {1:2—3x—3. “1<x=0
0=x=2

2% -3
14, = ’
§o {ﬁx—f—'f, 2<x=3

i,

} _55'15. The function

x, 0=x<1

fix) = {0' =1

is 2ero at x = 0 and x = [ and differentiable on (G, 1), but its
derivative on (0, 1) is never zero. How can this be? Doesa't
Rolle’s Theorem say the derivative has to be zero somewhere in
(0, 1)? Give reasons for your answer.

16, For what values of a, m, and b does the function

3

3, x=0
f=4=x*+3x+a, 0<x=<1l
mx + b, l=x=2

}a{;isfy the hypotheses of the Mean Value Theorem on the interval
) 2] ?

wx TN LR

Roots (Zeras)
17. a. Plot the zeros of each polynomial on a line together with the
zeros of its first derivative,

D y=2-4
ii) y=x+8+15
i) y=x2-32+4=(+ Dx— 272
iv) y=x - 332+ 216x = x(x — 9{x — 24)
b. Use Rolle's Theorem to prove that between every two zeros
of x* + g, X' + +++ + ajx + ag there lies a zero of

N (n = Da,_ "t e g,

18. Suppose that f" is continucus on [a, 5] and that £ has three
zeros in the interval. Show that f* has at least one zero in (a, b).
Generalize this result.

19. Show that if f* > 0 throughout an interval [a, &], then £’ has at
most one zero in [, &]. What if 7 < 0 throughout [ a, b | instead?

20. Show that a cubic polynomial can have at most three real zeros.

Show that the functions in Exercises 21-28 have exactly one zero in
the given interval.

2L fy=x+3x+ 1, [-2,-1]
22, fix) =X+ :’—2 + 7, (=00,0)

2. 80 = Vi+ Vi+1-4, (0,
24, g = 1_1—7"' VI+1-31, (-1, 1)

25, 1) = 6 + sin? (g) -8, (—00,00)

26. r(8) = 20 ~ cos? 8 + V2, (~00,0)
27, r6) = secd - % +5, (0,7/2)

28, 1(0) = tan 8 ~ cotf — 6, (0, /2)

Finding Functions from Derivatives
29. Suppose that f(—1) = 3 and that f'(x) =0 for all x. Must
Jx) = 3 for all x? Give reasons for your answer:

30. Suppose that f(0) = 5 and that f'(x) = 2 for all x. Must f(x) =
2x + 5 for all x? Give reasons for your answer.

31. Suppose that f'(x) = 2x for all x. Find f(2) if
a fl0)y=10 b. (=0 ¢ f(=2) =3.

32, What can be said about functions whose derivatives are constant?
Give reasons for your answer,

In Exercises 33-38, find all possible functions with the given
derivative.

B.ay=x b. y =2 c y=x
M oay=2xu b.y=2x=1 ey =32%+2-1
1 1 1
3s. P — , V= —_— . vV =5 4 =
a y 2 b. y | = c. y=35 2
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36. a, re L b. y = .y =dxr-—

Y ENG RV Y vz
37. a. y =sin2e b, y =cos% c y'=sin2:+'cos%
38. 8y =sec?8 b y=VE ¢y =V0~sed

In Exercises 39-42, find the function with the given derivative whose
graph passes through the point P.

3. fl(xy=2x—-1, PO,0)

40. g'(x) = 2

+ 2Zx, P-1,1)

41, f'(x) = ¥, P(O, %)

42, r'() =secrtanr —~ 1, P(0,0)

Finding Position from Velocity or Acceleration

Exercises 4346 give the velocity ¥ = ds/dr and initial position of an
object moving along a coordinate line. Find the object’s position at
time 1.

43. v=98r+ 5, s(0)=
4, v=32-2, 505 =
45, v =sinwt, s(0) =

46. v = gcos 3,.'. sl =1

Exercises 47-50 give the acceleration a = d% /dr?, initial velocity,
and initial position of an object moving on a coordinate line. Find the
object’s position at time ¢.

47. a=¢, v(0) =20, s(0)=35
48, a =98, v({0)=-3, s(0)=
49. a=—4sin2t, v(0) =2, s(0)=-=3
50, a = ﬂ_icos .3,,{, w0) =0, #0)=-1

Applications

51. Temperature change It took 14 sec for a mercury thermometer
to rise from —19°C to 100°C when it was taken from a freezer
and placed in boiling water. Show that somewhere along the way
the mercury was rising at the rate of 8.5°C/sec.

A trucker handed in a ticket at a toll booth showing that in 2 hours
she had covered 159 mi on a toll road with speed limit 65 mph.
The trucker was cited for speeding. Why?

Classical accounts tell us that a 170-oar trireme (ancient Greek or
Roman warship) once covered 184 sea miles in 24 hours. Explain
why at some point during this feat the trireme's speed exceeded
7.5 knots (sea or nautical miles per hour).

A marathoner ran the 26.2-mi New York City Marathon in 2.2 hours.
Show that at least twice the marathoner was running at exactly 11
mph, assuming the initial and final speeds are zero.

Show that at some instant during a 2-hour automobile trip the car’s
speedometer reading will equal the average speed for the trip.
Free fall on the moon On our moon, the acceleration of gravity
is 1,6 m/sec?. If arock is dropped into a crevasse, how fast will it
be going just before it hits bottom 30 sec Iater?

52.

53.

55.

56.

Theory and Examples '

57.

58.

60,

61.

62.

63

-

66

67

68.

69.

70.

. Graph the function

. Suppose that 0 < f'(z) < 1/2 for all x-values. Show that f(~l) 5

The geometric mean of @ and b The geometric mean o 4
two positive numbers a and b is the number Vab. Show tha 1
the value of ¢ in the conclusion of the Mean Value Theorem :
for fx)=1/x_on an interval of positive numbey ¥
[a,b)isc = Vab.

The arithmetic mean of a and » The arithmetic mean of tyq
numbers a and b is the number (a + b)/2. Show that the value pf 3
c in the conclusion of the Mean Value Theorem for f(x) = x? gy &
any interval [a,b] isc = (a + b)/2. i

f(x) = sinxsin (x + 2) — sin® (x + 1).

What does the graph do? Why does the function behave this wayy
Give reasons for your answers. it

Rolle’s Theorem

a. Construct a polynomial f(x) that has zeros at x = =2,
1,and 2.
b. Graph f and its derivative f' together. How is what you see
related 1o Rolle's Theorem?
¢. Do g(x) = sin x and its derivative g’ illustrate the same phe- |
nomencn as f and f'? '
Unique solution Assume that § is continuous on [a,b] and3
differentiable on (a, b). Also assume that f(a) and f(b) havel
opposite signs and that f' # 0 between a and b. Show that
f(x) = 0 exactly once between a and b. i _
Parallel tangents Assume that f and g are differentiable on®
[a, &) and that f(a) = g(a) and f(b) = g(b). Show that there is}}
at least one point between a and & where the tangents to the
graphs of f and g are parallel or the same line. Illustrate with &
sketch.
Suppose that f'(x) =1 for 1 = x = 4. Show that f(4)
A1) = 3. -

-1,0, §

() <2+ f(=1).

Show that |cosx = 1] =
fy =cosron [0,x].)
Show that for any numbers a and b, the sine inequality |sinb —#8
sina| = |5 — a is true. i
If the graphs of two differentiable functions f(x) and g(x) start & 3
the same point in the plane and the functions have the same rale
of change at every point, do the graphs have to be identical? G“'
reasons for your answer. E
If |fw) = f(x)] = |w — x| for all values w and x and f is a di 1_
ferentiable function, show that —1 = f'(x) = 1 forall x-valllﬂs'
Assume that f is differentiableon @ = x = band that f(b) < f ("
Show that f is negative at some point between a and b. :
Let f be a function defined on an interval [a, b]. What cont
tions could you place on f to guarantee that i

f(b) f( a

[x| for all x-values. (Hint: Consi

oF i Sy b

Ly 3

max f*,

min ' =

R o o D

where min f' and max f* refer to the minimum and maximis
values of f* on [a, b]? Give reasons for your answers.



i Use the incqualities in Exercise 70 to estimate f(0.1) if f'(x) =
E/( + xcosx)for0 = x=0.1and f(O) = 1.

2 5. Use the inequalities in Exercise 70 to estimate f(0.1)if f'(x) =
&1 /(1 ~ MforQ =< x = 0.1 and f(0) = 2.

e I!Let f be differentiable at every value of x and suppose that
= j(1) = 1, that f* < Oon (=00, 1), and that §* > 0 on (1, 00),

' b, Must f(1) = 07 Explain.
g Let f(¥) = p + gx + r be a quadratic function defined on a
closed interval [ a, b]. Show that there is exactly one point ¢ in (a, &)
\;'_ st which f satisfies the conclusion of the Mean Value Theorem.
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75. Use the same-derivative argument, as was done to prove the
Product and Power Rules for logarithms, to prove the Quotient
Rule property.

76. Use the same-derivative argument to prove the identities

b. sec™tx + csc”!

-1 1, =T .
a tan ' x +cot ' x 2 x ]
77. Starting with the equation e"g* = %0, derived in the text,
show that ¢™* = 1/¢* for any real number x. Then show that
e" /et = ¢57% for any numbers x, and x,.

78. Show that (g"): = ¢"%: = (¢%)" for any numbers x, and x,.

tonic on the interval,

In sketching the graph of a differentiable function, it is useful to know where it increases
(rises from left to right) and where it decreases (falls from left to right) over an interval. This
section gives a test to determine where it increases and where it decreases. We also show how
to test the critical points of a function to identify whether local extreme values are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive
derivatives are increasing functions and functions with negative derivatives are decreasing
functions, A function that is increasing or decreasing on an interval is said to be mono-

(a, b).

COROLLARY 3  Suppose that f is continuous on [a, #] and differentiable on

If f'(x) > O at each point x € (g, b), then f is increasing on [a, b].
If f'(x) < 0 at each point x & (a, b), then f is decreasing on [a,b].

1R Proof

.'I': -: {J 3 f (x =

Let x; and x; be any two points in [a, ] with x; < x,, The Mean Value Theo-
rem applied to f on [x,, x,] says that

Flx) — flx) = f(cHxe — x1)

5 for some ¢ between x| and x;. The sign of the right-hand side of this equation is the same
. R ; as the sign of f'(c) because x; — x, is positive. Therefore, f(x;) > f(x,) if f' is positive
gt o on (a, b) and f(x,) << f(x;) if f' is negative on (g, b). [

Corollary 3 tells us that f(x) = Vi is increasing on the interval [0, 4] for any

b > 0because f'(x) = 1/ Vixis positive on (0, b). The derivative does not exist at x = 0,

but Corollary 3 still applies. The corollary is valid for infinite as well as finite intervals, so
Vxis increasing on [ 0, 00),

e To find the intervals where a function f is increasing or decreasing, we first find all of

gl the critical points of f. If @ < b are two critical points for f, and if the derivative f' is

s continuous but never zero on the interval (a, b), then by the Intermediate Value Theorem

¥ applied to f', the derivative must be everywhere positive on (g, b), or everywhere negative

i there. One way we can determine the sign of f' on (a, b) is simply by evaluating the

d . _"3: : derivative at a single point c in (a, b). If f'(c) > 0, then f'(x) > 0 for all x in (a, b) so f

: is increasing on [a, ] by Corollary 3; if f'(c) < 0, then f is decreasing on [a, b]. The

9 next example illustrates how we uvse this procedure.

g T L
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}f’ ¥=(x% = 3)er

= N W g
T

g
=5 -4 =3 =2 | 1 {2 3

_5-
-6+

FIGURE 4.23 The graph of
f(x) = (2 — 3)e* (Example 3).
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EXAMPLE 3  Find the critical points of '
&) = (2 = 3)e

Identify the open intervals on which f is increasing and decreasing. Find the functiun's'-
local and absolute extreme values,

Solution The function f is continuous and differentiable for all real numbers, so the
critical points occur only at the zeros of §. i
Using the Derivative Product Rule, we find the derivative

F@=02-3-Ley Lz g
dx dx
=(x? ~3)r e+ (2x)- &
=+ 2x - 3¢
Since ¢ is never zero, the first derivative is zero if and only if
X+2x—-3=90
x+ 3)x~-1)=0.

The zeros x = —3 and x = 1 partition the x-axis into open intervals as follows.

Interval x< -3 _3I<ax<l 1 <x

Sign of £’ it i +
increasing decreasing increasing

Behavior of f ———— —— —> X

T
el Sk e o ERAE Y| 0 1 2 3

We can see from the table that there is a local maximum (about 0.299) at x = —3 and}
a local minimum (about —5.437) at x = 1. The local minimum value is also an abso-
lute minimum because f(x) > 0 for |x| > V/3. There is no absolute maximum. The]
function increases on (~0o,—3) and (1,00) and decreases on (-3, 1). Figure 4.233
shows the graph. L1

Analyzing Functions from Derivatives

Answer the following questions about the functions whose derivatives

are given in Exercises 1-14;
a. What are the critical points of 7

b. On what open intervals is f increasing or decreasing?
c. At what points, if any, does f assume local maximum and minj-

mum vajues?
L fix)=x(x-1)
3 F@==-1Px+2)
5. flx) = (x = 1)e>

6. /() = (x - THx + 1)(x + 5) 1s. A = 4
7. f’(x)=xjfT-22. x =2 2 k7D 2 ITvE
8. f'(-r)=%;z—ii—g. x#-1,3 _\:fﬂ A ——p /_ N ./;/ x
9-f’(x)=l-%. x#0 10.f'(x)=3—-\6/.—x. x#0 2 7 2

2 f'(x) = (x = 1)(x + 2) -
4 0 = (x = Dx +2¢

1L ') = xR+ 2) 12, /() = xVx - 3y
13, f'{x) = (sinx - )2 cosx + 1,0 < x= 27

14. f'(x) = (sinx + cos x)sinx — cosx),0 = x = 27
Identifying Extrema

In Exercises 15—44;

8. Find the open intervals on which the function is increasing and
decreasing.

b. Identify the function’s local and absolute extreme values,
any, saying where they occur. b




1_._ _): 18. -
;:. ] ~ ~ \
L e / z ¥ =f x) / ¥ =f x) : N
,‘ H j/ 1, I / \ > X

N
L, P
P o]
—
]

-

R I -

a g0 == =3t +3 20, g =-32+9r+5
a1 b =~ + 28 22, A(x) = 2% = 18z
Oy f(6) = 36% — 46° 24. f(6) = 66 - ¢°
L35, f(r) =37 + 16r 26. h(r) = (r + 77
B i =x -8 +16 28 g) =x* — 42 + 42

;{1 H) = 36— 1 30. K@) =157 - £
gl f(x) = x - 6Va -1 32 g =4Vx -2 +3
.14_ gx) = xV8 - & M gy =x*V5—x

R R
5. f) = 2V + 8) 38. g(x) = 2 (x + 5)
99 h(x) = x' — 4) 0. k(x) = 232 — 4)
,.,.~ flo=eF+ e+ 42, f(x) = V*

LB (o) = xlnx M, f(x) =x*Inx

Exercises 45--56;

a, Identify the function’s local extreme values in the given
domain, and say where they occur.

s
' b. Which of the extreme values, if any, are absolute?

ﬁ] ¢, Support your findings with a graphing calculator or computer
¢ grapher.

M5 fi) =2x~ 2, ~00<xs2

FA6. f() = (x + 17, —c0<x=0

4l gy =2~ dx+4, 1 =x<00

hg)=-x*-6x—-9, -d4sx<00

=127, -3=1<™

S0 f) =P -3 —c0<r=3

5L ) =T - 20+ 4y, Osx<oo

._z' y=x+32+3x+1, ~0<x=0
D (0= VB -2 —5=xs5

P = V2o -3, 3sx<o
£, gy =22
s X

10 Exerciges 57-64:
i+ % Find the local extrema of each function on the given interval,
b~ and say where they occur.

f 1. Graph the function and its derivative together. Comment on the
behavior of f in relation to the signs and values of f'.
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57. fx) =sin2x, 0sxs7
58, f(x) =sinx —cosx, 0<x =27
59. f(x} = Vicosx + sinx, 0=x=27

60. f(x) = —2x + tanx, ?21<x<%

= 0=x=2p

61, f(x) = % ~ 2sin3,
62 f(x) =-2cosx —cos’x, —T=x=w
63. f(x) =csclx —2cotx, O0<x<m

64. f(x) = sec’x — 2 tan x, :2£<I<%

Theory and Examples

Show that the functions in Exercises 65 and 66 have local extreme
values at the given values of 8, and say which kind of local extreme
the function has.

65. h(@) = 3 cos 4

2'
66. h(9) #55ing, O0=f0=7w at@=0undf=m
67. Sketch the graph of a differentiable function y = f(x) through
the point (1, 1) if f'(1) = 0 and
a f'(x) > Oforx < 1and f'(x) < Oforx > 1;
b. fi(x}) <O0forx < land f'(x) > Oforx > 1;
e f'(x) > Oforx # [
d. f'(x) <O0forx # 1.
68. Sketch the graph of a differentiable function y = f(x) that has
a. alocal minimum at (1, 1) and a local maximum at (3, 3):
b. alocal maximum at (1, 1) and a local minimum at (3, 3);
c. local maxima at (1, 1) and (3, 3);
d. local minima at (1, 1) and (3, 3).
69. Sketch the graph of & continuous function y = g(x) such that
a g2)=20<g <lforx<2,g'(x)—1"asx—2",
-1 <g <0forx>2andg'(x) > —1" as x — 2%;
b. g(2) =2,g' <0forx < 2,g'(x)—>=00as x— 2",
g > Oforx > 2 and g'(x) =00 as x — 2%,
Sketch the graph of a continuous function y = A(x) such that
a h0)=0,-2 = hix) = 2forall x, h'(x) —rc0as x— 0",
and A'(x) = o0 a8 x — 01,
b. h(0)} = 0,~2 = h(x) = Oforall x, &' (x) =00 as x— 0",
and A'(x} ——00as x — 0%,
Discoss the extreme-value behavior of the function f(x) =
xsin (1/x), x # 0. How many critical points does this function
have? Where are they located on the x-axis? Does f have an abso-
lute minimum? An absolute maximum? (See Exercise 49 in
Section 2.3.)
Find the open intervals on which the function f(x) = ax®+
bx + ¢, a # 0, is increasing and decreasing. Describe the
reasoning behind your answer.
73. Detenmine the values of constants @ and b so that f(x) =
ax? + bx has an absolute maximun at the point (1, 2).
74. Determine the values of constants a, b, ¢, and d so that
f(x) = ax® + bx* + cx + d has a local maximum at the point
- (0, 0} and a local minimum at the point (1, —1),

0=0=27 uatf =0andd =27

70,

-

7t

-

72
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75. Locate and identify the absolute extreme values of 79. Find the absolute maximum value of f(x) = x*In(1/x} and sayl_
a. In(cosx)on [—w/4,7/3], where it is assumed. ;
b. cos (Inxjon [1/2,2]. 80. a. Provethate' 2 | + xifx = 0.

76. a. Prove that f(x) = x — Inx is increasing forx > 1. . b. Use the result in part (a) to show that
b. Using pan (), show that lnx < xifx = 1. e‘21+x+lx’.

77. Find the absolute maximum and minimum values of f(x) = C

81. Show that increasing functions and decreasing functions are ope,

&= 2xon[0,1].
to-one. That is, show that for any x; and x; in [, x3 # X, implieg

78. Where does the periodic function f(x) = 2"/ (ake on its
extrerne values and what are these values? flx) # flx).

Use the results of Exercise 81 to show that the functions in Exercises}
82-86 have inverses over their domains. Find a formula for df *! /4,
using Theorem 3, Section 3.8.

82. f() = (1/3)x + (5/6) 83 f(x) = 27x°
84. fi) =1 - 8 85. f(x) = (1 — %)*
86. f(x) = x°°

4.4 Concavity and Curve Sketching

We have seen how the first derivative tells us where a function is increasing, where iti
decreasing, and whether a local maximum or local minimum occurs at a critical point. o]
this section we see that the second derivative gives us information about how the graph of
a differentiable function bends or turns. With this knowledge about the first and second
derivatives, coupled with our previous understanding of symmetry and asymptotic behav;
jor studied in Sections 1.1 and 2.6, we can now draw an accurate graph of a function. B}
organizing all of these ideas into a coherent procedure, we give a method for sketching
graphs and revealing visvally the key features of functions. Identifying and knowing
locations of these features is of major importance in mathematics and its applications i
science and engineering, especially in the graphical analysis and interpretation of data.

X

FIGURE 4.24 The graphof f(x) = x®  COncavity

is concave down on (—00, 0) and concave  As you can see in Figure 4.24, the curve y = x° rises as x increases, but the porti

up on (0, o) (Example 1a). defined on the intervals (=00, 0) and (0, o0) turn in different ways. As we approach W
origin from the left along the curve, the curve turns to our right and falls below its tam;
gents. The slopes of the tangents are decreasing on the interval (—09, 0). As we mo Vi
away from the origin along the curve to the right, the curve tums to our left and rises abo¥e
its tangents. The slopes of the tangents are increasing on the interval (0, ©). This turnif
or bending behavior defines the concavity of the curve. -

DEFINITION The graph of a differentiable function y = f(x) is

| (a) concave up on an open interval I if f' is increasing on I;
(b) concave down on an open interval I if f' is decreasing on /.

If y = f(x) has a second derivative, we can apply Corollary 3 of the Mean Value Theo il
to the first derivative function. We conclude that f’ increases if f > 0 on /, and decre83
if f* < 0. :
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figure summarizes how the first derivative and second derivative affect the shape of 5

graph.
y=fx ¥ = flx) y=f&
Differentiable = y' = 0= rises from ¥ < 0= falls from
smooth, connected; graph lefi to right; left to right;
may rise and fall may be wavy may be wavy
or or -
+
»" > 0= concave up y" < 0 => concave down y" changes sign at an
throughout; no waves; graph | throughout; no waves; inflection point
may rise or fall graph may rise or fall
/‘\ o \= .+
+ =
¥ changes sign => graph y=0and y"<0 y=0and y>0
has lecal maximum or loca) at a point; graph has at a point; graph has
minimum local maximum local minimum e
&
4
-
Analyzing Functions from Graphs S. . 27 21'r 6. ™ 7
i i i g . . =x+sinly, - =xs = = — gy, L e D
Identify the inflection points and Jocal maxima and minima of the y 3 FUNTSE R
functions graphed in Exercises 1-8. Identify the intervals on which A 4
the functions are concave up and concave down.
L 22 _i? 1 2. x
=& 42 =d 2244 L L, »
y 372 3 y=3 77 2w 0 *
; 3 3 3
}
/\ T y=sinjz|,~2rsxs2m 8'y=2cosx-— 2x, —T=xs '3'211’"

N i |
* l\,* L
0 * > e 37
V|V :
3. y = %(xl - )23 4. 9 132 - 7) NOT TO SCALE

J’=H
y y

Graphing Functions 4
In Exercises 9-58, identify the coordinates of any local and absolutﬂ
extreme points and inflection points. Graph the function.

0 x 5 »x 9, y=x*—4x+13 10, y=6-2x - x*
1. y=x - 3c+3 12. y = x(6 ~ 20°




L3 y=-20+60-3 M y=1-%-62-0
i5.y1(1—2)3+l

16'yi|'(x+l)3

& 17.y=x"—2t2=x2(x2—2)

4 =1r m
26.y=§x—t:1nx. —i-<.|:{5

2, y =5 30, y =1
*31 R ; 32, y=Yl=x
YUVEST TR
y=2.I"3I2/3 34.y=5x2/5—1x
= 23 _ Se —
=205 -« 36. y =x(x - 5)
R 37 y=VE- 2 38 y=(2 — P
3. y=Vi6- 2 0. y=z+32
2
;-—1_23 2 y=VI+1
_ _Bx _ 5
T4 By=373
y= |2 -1 46. y = |2* -~ 24|
V=x, x<0
=\f _{ L
|x! \/.;, x=0
y=vVir-4
= xeVs s0.y=%
- Yy=In3 -1 52. y = x(lnx)?
Y= =27 — 3x 54, y = xe™*
» ¥ = In{cos x) 56, y = inx
X
S -
Vi Y e By=iva

, Skﬂ‘:hing the General Shape, Knowing y'
i f ®h of Exercises 59-80 gives the first derivative of a continuous
J Ction y = f(x), Find y" and then use Steps 2-4 of the graphing

- Procedure on page 249 to sketch the general shape of the graph of f.
'~ss")"“—'2-l-x—.:c2 60. y =X>-x-6

Ly x ~ 3) 62. ¥y =222 -x)

Sy X2 = 12) 64, ¥y = (x — 1)}(2x + 3)
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65. y' = (8 — 5x1)d — 1) 66, ¥ = (x* — 20)(x — 52

67. y =sec’x, —Z<x<Z

2 2
' = -7 Ll
68. y = tanx, 2<.1:<2
69. y'=cotg. 0<@¢<2wr 70. y’=csczg, 0<8<2r
P 14 = T T
. y =tan*f = 1, 7 <f< >
72. Yy =1—-cot’d, 0<f<m
73. ¥ =cost, 0=r=2x¢
4. ¥y =sint, 0s¢ =27
75. y = (x + 1)73¥? 76, y' = (x — 2)°13
7. ¥ =xE-1) 78, ¥ = x5 + 1)
-2, x=0
79. ¥y = =
y =20 {2:; x>0

. -2, =0
80.y-{x2‘ x>0

Sketching y from Graphs of y* and y*

Each of Exercises 81-84 shows the graphs of the first and second
derivatives of a function y = f(x). Copy the picture and add to it a
sketch of the approximate graph of f, given that the graph passes
through the point P.

81. y 82. y
y = f(x)
7 y =1
X X
/ / 3 \ \
y=f"x) y=F"x)
83
Pr y =1

0 > X
y"f’&

y=fx

> X
/”“f"“)\x

Graphing Rational Functions
Graph the rational functions in Exercises 85-102 using all the steps in
the graphing procedure on page 249,

2+ x—1

(=]

P

2= 49

85. = . = e r——
YTTa R A ¥
_X¥+1 -4

87. y= = 88. y >

T .

89. y ) 90, y e
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91. y= —5—:——? N y= f—z—z—;
93'y=xfl 94")’:_.\';14 ‘
05, y= T2t 1 9. y= -E 2t

9. y= x szJ-r: :_sz— 1 98, y = x:’:-—xx: 2

%.y= 3 100 = —12)

10l y= e 3_ 2 (Agnesi’s wiich)

102. y = 32—44{—4 (Newton’s serpentine)

Theory and Examples

103. The accompanying figure shows a portion of the graph of a
twice-differentiable function y = f(x). At each of the five
labeled points, classify y’ and y” os positive, negative, or zero,

>

104. Sketch a smooth connected curve y = f(x) with

f(=2) = 8, ff@y==2=0,
fl0) = 4, flx) <0 for |z <2,
f2y=0, fix)<0 for x<0,

Fx) >0 for |x| >2, i) >0 for x>0

105. Sketch the graph of a twice-differentiable function y = f(x)
with the following properties. Label coordinates where possible.

x ¥ Derivatives
xr<2 ¥y <0, y>0
2 1 y=0 y=>0
2<x<4 y=>0 y >0
4 4 y >0 y=0
4<x<6 y=0 y<0
6 7 ¥=0 y <0
x>6 ¥y <0, <0

106. Sketch the graph of a twice-differentiable function y = f(x) that
passes through the points (-2, 2), (=1, 1), (0,0, (1, 1), and
(2, 2) and whose first two derivatives have the following sign

' patterns.

a3

*

Motion Along a Line The graphs in Exercises 107 and 108 shoy
the position s = £(r) of an object moving vp and down on a coorgj.
nate line. (a) When is the object moving away from the origin) -
Toward the origin? At approximately what times is the (b) velociy
equal to zero? (c) Acceleration equal 1o zero? (d) When is the acce). 4
eration positive? Negative?

T Vo

ke &

107. 3
g
-]
8
§ s=fn
2
) f i M 1 1 M " h ]
0 5 10 15
Time (sec)
108. s ‘
B .
E 1
3 ¢
= E
& f
fa] / .
Y N B MY N ' F
0 5 10 15 J
Time (sec) i

109. Marginal cost The accompanying graph shows the hypotheti-
cal cost ¢ = f(x) of manufacturing x items. At approximately =
what production level does the marginal cost change from B

R '_._-

e

P I M i L L
20 40 60 80 100120
Thousands of units produced

decreasing to increasing? 3 o
[ ol
e

.!

€= f{x) E‘

F 3
Q : {!
b

{

#

1 1 1 1 ':::-'F,

110. The accompanying graph shows the monthly revenue of the Widget
Corporation for the past 12 years. During approximately what:$
time intervals was the marginal revenue increasing? Decreasing? 5

¥

y=r

ka3 o e ks T o B

FER [ S T P !

) 10
111. Suppose the derivative of the function y = f(x) is ¢ ::'

¥y == Dx—2).

2 e by i AT o

At what points, if any, does the graph of § have a local mini 3
mum, local maximum, or point of inflection? (Hins: Draw theé )]
sign pattern for y".) g



¥ o= (- 1P - 2z - 4),

At what points, if any, does the graph of f have a local mini-
. mum, local maximum, or point of inflection?

i a For x = 0, sketch a curve y = f(x) that has f(1) = O and
f!(x) = 1/x. Can anything be said about the concavity of such a
 curve? Give reasons for your answer.

4, Can anything be said about the graph of & function y = f(x) that
- has a continuous second derivative that is never zero? Give rea-
. sons for your answer. *

* 115/ If b, ¢, and d are constants, for what value of & will the curve
# ys,r’+bx2+cr+dhnveapnintofinﬂectionatx=1?
Give reasons for your answer.

& 116. Parabolas

a. Find the coordinates of the vertex of the parabola
y=al +bx+ca#0,

b. When is the parabola concave up? Concave down? Give rea-
sons for your answers.

17. Quadratic curves What can you say about the inflection
points of a quadratic curve y = ax? + bx + ¢,a # 07 Give
reasons for your answer.

.1.i18. Cubic curves  What can you say about the inflection points of
i a cubic curve ¥ = ax® + bx? + ex + d,a # 07 Give reasons
for your answer.

: ".1'1i9. Suppose that the second derivative of the function y = f(x) is

o Y= x4+ x - 2).

For what x-values does the graph of f have an inflection point?
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120, Suppose that the second derivative of the function y = f(x) is
¥ o= 2x = 2% + 3).
For what x-values does the graph of f have an inflection point?

121. Find the values of constants a, b, and ¢ so that the graph of
¥y =ax’ + bx* + cx has a local maximum at x = 3, local mini-
mum at x = —|, and inflection point at (1, 11},

122. Find the values of constants a, b, and ¢ so that the graph of
¥ = (2 + a)/(bx + ¢) has a local minimum at x = 3 and a
local maximum at (—1, —2).

COMPUTER EXPLORATIONS

In Exercises 123126, find the inflection points (if any) on the graph of
the function and the coordinates of the points on the graph where the
function has a local maximum or local minimum value. Then graph the
function in a region large enough to show all these points simultane-
ously. Add to your picture the graphs of the function’s first and second
derivatives. How are the values at which these graphs intersect the
Xx-axis related to the graph of the function? In what other ways are the
graphs of the derivatives related to the graph of the function?

123, y = x% = 5¢4 — 240 124, y = 2 — 1222
1zs.y=;—‘x5+1a8—25
126.y=%4-%3—412+12t+20

127, Graph f(x) = 2x* — 4 + | and its first two derivatives
together. Comment on the behavior of § in relation to the signs
and values of f' and f*.

128, Graph f(x) = xcosx and its second derivative together for
0 = x = 2. Comment on the behavior of the graph of f in
relation to the signs and values of f".

- 45 Indeterminate Forms and L'Hépital’s Rule

. - l HISTORICAL BIOGRAPHY
o r. . . Guiliaume Francois Antoine de I'Hopital
(1661-1704)

Johann Bernoulli
(1667-1748)

their calculation.

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or +09, The rule is known
today as "Hépital’s Rule, after Guillaume de I"Hépital. He was a French nobleman who
wrote the first introductory differential calculus text, where the rule first appeared in
print. Limits involving transcendenta! functions often require some use of the rule for

Indeterminate Form 0/0

If we want to know how the function

X —sinx

Fix) = p

behaves near x = 0 (where it is undefined), we can examine the limit of F(x) as x— 0.
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit
of the denominator is 0. Moreover, in this case, both the numerator and denominator
approach 0, and 0/0 is undefined. Such limits may or may not exist in general, but the
limit does exist for the function F(x) under discussion by applying 1'Hbpital's Rule, as we
will see in Example 1d.
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In Exercises 1-6, use 1'Hépital’s Rule to evaluate the limit. "Then
evaluate the limit using a method studied in Chapter 2.

. x+2 . §in 5x
1 i 54 2 i
. 5x% = 3x . 2-1
3 hm S E T Y p—
. 1 —cosx . 2+ 3
5. lim—Co8X i 22t 3x
m 6 N S x+1

Applying PHopital's Rule
Use I’Hépital’s rule to find the limits in Exercises 7-50,

. x—2 . 2 =125
7‘.!-’-'-“2.‘:2—4 s'x]—l-IPsx+5
. =4+ 15 P +3
9. lim ————= .
SR 12 10 rl-l-T|4r3—r+3
. 5x3 — 2 . ox = 82
11, lim =———= 12.
70 + 3 2 + 5
13 limsin 2 . 1 sin 5¢
T =0 ! =
15, lim— 16, limS0E =%
—pcosx — | =0 X
. 20 — w . W+7
17. el'-g'/zcos 2mr —8) LS 9—1-1—'2/35in @ + (x/3)
1 —sinf . x—1
15. all.r%zl + cos 260 20. P—lﬂlnx - sinmx
. In(csc x)
ei5 ﬂln (sec x) 2 x——tT/z(x = (w/2P
(1 - f i
23, fim U521 2. lim--1S01
=0 I = sin! 0] = cost

25. lim ( —E)secx 26, lim (E— )tanx
2 w=(m/\ 2

—{mf)"

ing . 1/2 — 1
27, fimi——1 2, /21
a—p @ g0 8
.x2 . 3F-1
2. lmar 7 3. Im> =T
. In{x+ 1) . log; x
3. lim G 32, lim Tog; (¢ + 3)
+ 2x e — 1
33. lim M—) 34. lim ln(_)
—{* Inx —0t Inx
Viy+25-5 Vay + & —
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y—0 ¥y y—0 y
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00 ="
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39, lim X 40, lim (221 _L
z=0*In (sin x) g x sinx

41. lim ( I -—]—) 42, lim (cscx = cot x + cos x)
re*Ax—1 Inx Jlaot; o
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B e -1 -
2
45, tim St 46. lim Qe
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Indeterminate Powers and Products
Find the limits in Exercises 51-66.
51. lim x'/1-% 52, lim xMt—9
=1 1"
53, lim (lnx)'* 54, lim (ln x)l/s=e}
A= =
55, lim x~Ynx 56. lim x'/nx
x=0* =00
57. lim (1 + 2x)l/QMkD 58, lim (" + x)\=
O =+
59, lim &* 60. lim (1 + ,‘-c)
=0 =Dt
x l/x
61 Im (X2 62. lim (21
= \X = 1 i X + 2
63. limxIlnx 64. lim x(ln x)?
0 a—0
65. Iimxmn(z': - ) 66. limsinx-Ilnx
=0 2 —0*

Theory and Applications ]
L'Haopital’s Rule does not help with the limits in Exercises 67-74. Try
it—you just keep on cycling. Find the limits some other way.

. VOx+ 1 . Vix
67. lim ——— 68. lim
.r"‘w\/x+ 1 I""U"\,l’sinx
SEC X . cotx
69. x—-(':rr'}zr S 70. xl‘!‘n& SSoit
L0025 =138 X4+ 4
71. ,ll'.ﬂasx e 72. lim = —T
73. lim i 74. lim —
,,—-anxe' =0 e‘l X o
75. Which one is correct, and which one is wrong? Give reasons %
Yyour answers. .
o x=3 _ .1 _1 s X =3 0.
Al T imy s MimeT3"6=0 4

76. Which one is correct, and which one is wrong? Give reasons '

YOUF ANSWers.
a limxzd_zx = lim e
" x—=0x2 — sinx —02x — cosXx
L L B
=02 +sinx 2+0
b. lim2 2l = =2 =2 _,

—0x2 = ging r—02r—cosx O0-1



nly one of these calculations is correct. Which one? Why are the
others wrong? Give reasons for your answers.

limxinx =0:(-00) =0
lr'uf

limxlnx =0-(—0c0) = —co
Pt

imxlnx = lim A% = =0 _
bm, —or(l/x)

imxlnz= lim X
lim, x 0 (1 /%)
UL I o
= lm’(—l_/x:’)'_xl-lpt}’( x} =0

ﬁud all values of ¢ that satisfy the conclusion of Cauchy's Mean
valve Theorem for the given functions and interval,

L A f=x e =x (@b =(-2,0
L b fW=x gm=x (ab) abitary

L L =234, g0=2 (ab=(0,3)

i ,-s;'g Continuous extension Find a value of ¢ that makes the function

4t 9x — 35in 3x
Eo —_— # 0
5 f(x = 51‘3 *

c, x=0

continuous at x = 0. Explain why your value of ¢ works.
For what values of a and b is

. ftan2x . a |, sinbx
—_— == TR
Im(l) ( ] x ) 0?

a, Estimate the value of
lim (x — V2 ¥ x)
=0
by graphing f(x) = x = V? + x over a suitably large inter-
vl of x-values.

b. Now confirm your estimate by finding the Jimit with

; I"'Hépital's Rule. As the first step, multiply f{(x) by the frac-
| tion (x + Va7 + Ofx+ VA x) and simplify the new
o humerator.

0 82 Find lim (VAZF 1 ~ Vi),
e x—+00
S8, 0/0 Form  Estimate the value of
g 22 — (3x + 1)V + 2

x =1

lim
r==|

by graphing. Then confirm your estimate with I'Hépital’s Rule,
84, This exercise explores the difference between the limit

R, . l &
tim (1 *F)

B and the limjt
}- ‘R

S
b
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8. Use I'Hépital’s Rule to show that

X
,Iiﬂ,(l + ;—) =e,
[T]b. Graph

f(x)=(1+‘

;), and g(x) = (1 + %)*

together for x = 0. How does the behavior of f compare with
that of g? Estimate the value of lim,—. f(x).

¢. Confirm your estimate of lim,_.o f(x) by calculating it with
I’'Hopital’s Rule.

85, Show that

k
lim (l + ':) = ¢
k=00 k
86. Given that x > 0, find the maximum vaiue, if any, of
a. xl,l':
b, x!#
¢ =" (n a positive integer)
d. Show that lim,—.c x'/™ = 1 for every positive integer r.
87. Use limits to find horizontal asymptotes for each function.

1 3x + o=
a.y=x“m(i) "'yzzi+e-‘-'
i , e—llx" x %0
88. Find f'(0) for f(x) = {0' x=0

@ 89. ‘The continuous extension of (sin x)* to [0, 7]
a. Graph f(x) = (sinx)* onthe interval 0 = x = 7. What
value would you assign to f to make it continuous at x = 07
b. Verify your conclusion in part (a) by finding lim,—q f(x)
with I'Hopital's Rule.
¢. Retuming to the graph, estimate the maximum value of f on
[0, 7 ]. About where is max f taken on?

d. Sharpen your estimate in part (c) by graphing f' in the same
window to see where its graph crosses the x-axis. To simplify
your work, you might want to delete the exponentiai factor

from the expression for ' and graph just the factor that has a
zZero.

[T] 90. The function (sin x)**"= (Continuation of Exercise 89.)

a. Graph f(x} = (sin x)™** on the interval =7 = 1 = 7. How
do you account for the gaps in the graph? How wide are the
gaps?

b, Now graph f on the interval 0 < x = 7. The function is not
defined at x = /2, but the graph has no break at this point.
What is going on? What value does the graph appear to give

“for f'at x = /27 (Hint: Use I'Hépital’s Rule to find lim f
as x— (7 /2)" and x— (w/2)*)

¢. Continuing with the graphs in part (b), find max f and min f
as accurately as you can and estimate the values of x at which
they are taken on.



