
(b)

FIGuRE 3.49 A worker atM
walks to the tight, pulling the
weight W upward as the rope
moves through the pulley P
(Example 6).

EXAMPLE 6 Figure 3.49a shows a rope running through a pulleyat P and bearing aweight W at one end- The other end is held 5 ft above the ground in the hand Al of
a worker. Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the worker
is walking rapidly away from the vertical line PW at the rate of 4 ft/sec. How fast is the
weight being raised when the worker’s hand is 21 ft away from PlY?

Solution We let OM be the horizontal line of length x ft from a point 0 directly below
the pulley to the worker’s hand M at any instant of time (Figure 3.49). Let Iz be the height.
of the weight W above 0, and let z denote the length of rope from the pulley P to the
worker’s hand. We want to know dh/dt when x = 21 given that dr/dr = 4. Note that the
height of P above 0 is 20 ft because 0 is 5 ft above the ground. We assume the angle at 0

6. If x = —
y and dy/dr = 5, then what is th/dr when y

7. If x1 + y2 = 25 and dr/dr = —2. then what is dy/dr when
x 3 and y = —4?

8. If i2y3 = 4/27 and dy/dr = 1/2, then what is dr/dr whefl
x = 2?

9. If L__\/x2+$,dr/dr_1, and dy/dr=3, find dL/dt
when x = 5 and y = 12.

10. If r ± 2 ÷ v3 12, dr/dr = 4, and dr/dr = —3, find dv/d
when r 3 and s = I.
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4 ft/sec

(a)

0 M
I

Lb

ii

is a right angle.
At any instant of time r we have the following relationships (see Figure 3.49b):

20 — h + z 45 Total length of rope is 45 ft.

201 + x2 = z2. Angle at 0 is a right angle.

If we solve for z = 25 + Ii in the first equation, and substitute into the second equation,
we have

202+x2=(25+h)2. (I),

Differentiating both sides with respect to r gives

dx dh
= 2(25 +

and solving this last equation for dh/dt we find

x
C’)dr 25+hdr

Since we know dr/dr, it remains only to find 25 + h at the instant when x = 21. From
Equation (1),

202 + 212 = (25 + Jz)2

so that

(25+h)2=841, or 25+h29.

Equation (2) now gives

dl: 21 84=_.4=_ 2.9ft/sec

as the rate at which the weight is being raised when x = 21 ft.

ExecCses
1. Area Suppose that the radius rand area A lrr2 of a circle are

differentiable functions of r. Write an equation that relates dA/dr
to dr/dr.

2. Surface area SupposethattheradiusrandsurfaceareaS = 4rr2
of a sphere are differentiable functions of I. Write an equation that
relates dS/dt to dr/dr.

3. Assume that y = Sx and dr/dr = 2. Find dy/dr.
4. Assume that Zr ÷ 3y = 12 and dy/dr = —2. Find dr/dr.
5. If y = x2 and dr/dr = 3, then what is dy/dr when x = —I?
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c. How is dy/dc related to dr/dr and dh/dt if neither r nor h is
constant?

Volume The radius r and height h of a right circular cone are
related Co the cone’s volume Vby the equation V = (l/3)irrh.

a. How is dy/dc related to dh/dr if r is constant?

b. How is dy/dc related to dr/dr if h is constant?

c. How is dy/dc related to dr/dr and ri/i/dc if neither r nor ii is
constant?

Changing voltage The voltage V (volts), current I (amperes),
and resistance R (ohms) of an electric circuit like the one shown
here are related by the equation V = JR. Suppose that V is
increasing at the raLe of 1 volt/sec while I is decreasing at the
rate of 1/3 amp/sec. Let tdenote time in seconds.

d, Find the rate at which R is changing when V = 12 volts and
1 2 amps. Is R increasing, or decreasing?

Electrical power The power P (watts) of an electric circuit is
related to the circuit’s resistance R (ohms) and current! (amperes)
by the equation P = Pd2

Distance Iet i and y be differentiable functions of c and let
Vx2 + y’- be the distance between the points (x, 0) and

(0, y) in (he .ty.plane.

C. How is rh/dr related to dy/dr if s is constant?

a. Assuming thatx, y, and z are differentiable functions of r,
how is dr/dr related to dx/dt, dy/dc, and dz/dc?

b. How is dr/dc related to dy/dc and dz/dc if x is constant?

c. How are rh/dr. dy/dc, and dz/dr related its is constant?

19. Area The area A of a triangle with sides of lengths a and /‘
enclosing an angle of measure 0 is

A = absin0.

a. How is d4/dc related to do/dc if a and bare constant?

b. How is rL4/dr related to dO/dt and do/dr if only his constant?

c. How is dA/dc related to do/dc, da/di, and rib/dc if none of
a, b, and 0 are constant?

20. Heating a plate When a circular plate of metal is heated in an
oven, its radius increases at the rate of 0,01 cm/ruin. At what rate
is the plate’s area increasing when the radius isSO cm?

21. Changing dimensions in a rectangle The length I of a rectan
gle is decreasing at the rate of 2cm/sec while the width w is
increasing at the rate of 2cm/sec. When / = 12cm and
w = 5 cm, find the rates of change of (a) the area, (b) the perim
eter, and (c) the lengths of the diagonals of the rectangle. Which
of these quantities are decreasing, and which are increasing?

22. Changing dimensions in a rectangular box Suppose that the
edge lengths x, y, and z of a closed rectangular box are changing
at the following rates:

dy
= I m/sec, = —2 m/sec,

dz
= I rn/sec.

Find the rates at which the box’s (a) volume, (b) surface area, and
(c) diagonal length s = Vx2 + y2 + z2 are changing at the
instant when x = 4, y = 3, and z = 2.

23. A sliding ladder A 13-ft ladder is leaning against a house when
its base starts to slide away (see accompanying figure). By the
time the base is 12 ft from the house, the base is moving at the
rate of S ft/sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder,
wall, and ground changing then?

24. Commercial air traffic Two commercial airplanes are flying
at an altitude of 40,000 ft along straight-line courses that intersect
at right angles. Plane A is approaching the intersection point at a
speed of 442 knots (nautical miles per hour; a nautical mile is
2000 yd). Plane B is approaching the intersection at 481 knots, At
what rate is the distance between the planes changing when A is 5

if the original 24 m edge length x of a cube decreases at the rate

0f 5 rn/mm, when x = 3 m at what rate does the cube’s

, surface area change?

ii. volume change?

A cube’s surface area increases at the rate of 72 in2/sec. At what rate

is the cube’s volume changing when the edge length is x = 3 in?

Volume The radius r and height h of a right circular cylinder

are related to the cylinder’s volume Vby the formula V = irr2h.

a. flow is dV/dt related to dh/dc if r is constant?

b. How is dV/dt related to dr/Ut if/i is constant?

a. What is the value of dV/dc?

b. What is the value of dI/dc?

c What equation relates dR/dr to dV/dc and dI/dr7

a. How are dP/dr, dR/dc, and dI/dc related if none of P.R. and
I are constant?

b. How is dR/dc related to dl/dc if P is constant?

c. At what rate is the angle 0 between the ladder and the ground
changing then?

y

a. How is cit/dc related to dr/dc if y is constant?

y(t)

1118.

b, How is dr/dc related to dr/dc and dy/dc ifneitherxnory is
constant?

13-ft ladder

Diagonals If x, y, and z are lengths of the edges of a rectangular
box, the common length of the box’s diagonals is r =

y2+z2.

0



200 Chapter 3: Derivatives

nautical miles from the intersection point and B is 12 nautical
miles from the intersection point?

25. Flying a kite A girl flies a kite at a height of 300 ft. the wind car-
lying the kite horizontally away from her at a rate of 25 ft/sec. How
fast must she let out the string when the kite is 500 ft away from her?

26. Boring a cylinder The mechanics at Lincoln Automotive are
reboring a 6-in.-deep cylinder to fit a new piston. The machine
they are using increases the cylinder’s radius one-thousandth of
an inch every 3 mitt. How rapidly is the cylinder volume increas
ing when the bore (diameter) is 3.800 in.?

27. A growing sand pile Sand falls from a conveyor belt at the rate
of 10 m3/min onto the top of a conical pile. The height of the pile
is always three-eighths of the base diameter, How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer
in centimeters per minute.

28. A draining conical reservoir Water is flowing at the rate of
50 m3/min from a shallow concrete conical reservoir (vertex
down) of base radius 45 m and height 6 m.
a. How fast (centimeters per minute) is the water level falling

when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then?
Answer in centimeters per minute.

29. A draining hemispherical reservoir Water is flowing at the
rate of 6 m3/min from a reservoir shaped like a hemispherical bowl
of radius 13 m, shown here in profile. Answer the following ques
dons, given that the volume of water in a hemispherical bowl of
radius R is V = (7r/3)y2(3R

—
y) when the water is)’ meters deep.

a. At what rate is the water level changing when the water is
8 m deep?

b. What is the radius r of the water’s surface when the water is
y m deep?

c. At what rate is the radius r changing when the water is Sm deep?
30, A growing raindrop Suppose that a drop of mist is a perfect

sphere and that, through condensation, the drop picks up moisture
at a rate proportional to its surface area. Show that under these
circumstances the drops radius increases at a constant rate.

31. The radius of an inflating balloon A spherical balloon is
inflated with helium at the rate of lOOir ft3/min. How fast is the
balloon’s radius increasing at the instant the radius is 5 ft? How
fast is the surface area increasing?

32. Hauling in a dinghy A dinghy is pulled toward a dock by a
rope from the bow through a ring on the dock 6 ft above the bow.
The rope is hauled in at the rate of 2 ft/sec.

a. How fast is the boat approaching the dock when 10 ft of rope
are out?

33. A balloon and a bicycle A balloon is rising vertically above a
level, straight road at a constant rate of I ft/sec. Just when the
balloon is 65 ft above the ground, a bicycle moving at a constant
rate of 17 ft/sec passes under it. How’ fast is the distance ‘0)
between the bicycle and balloon increasing 3 sec later?

34. Making coffee Coffee is draining from a conical filter into
cylindrical coffeepot at the rate of 10 in3/min.
a. How fast is the level in the pot rising when the cnffee in the

cone is 5 in. deep?

Ring at edge

y

N
9

Water level

Center of sphere

\ s(t)

N

j1

\

0 xQ)

b. How fast is the level in the cone falling then?

a

6”

How fast
is Ibis
level falling?

How fast
is this
level rising?

b. At what rate is the angle U changing at this instant (see the
figure)?
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Cardiac output In the late 1860s, Adolf Fick, a professor of
physiologY in the Faculty of Medicine in Wdrzberg, Germany,
developed One of the methods we use today for measuring how
much blood your heart pumps in a minute. Your cardiac output as
you read this sentence is probably about 7 L/min. At rest it is
kely to be a bit under 6 L/min. If you are a trained marathon
pinner mnning a marathon, your cardiac output can be as high as
30 L/min.

Your cardiac output can be calculated with the formula

Q

where Q is the numher of milliliters of CO2 you exhale in a minute
and D is the difference between the CO1 concentration (ml/L) in
the blood pumped to the lungs and the CO1 concentration in the
blond returning from the lungs. With Q = 233 mI/mm and
p = 97 — 56 = 41 ml/L,

233 mI/mm

= 41 ml/L
5.68 L/min,

fairly close to the 6 L/min that most people have at basal (rest
ing) conditions, (Data courtesy of I. Kenneth Herd, M.D., Quillan
College of Medicine, East Tennessee State University.)

Suppose that when Q = 233 and D 41, we also know
that D is decreasing at the rate of 2 units a minute but that Q
remains unchanged. What is happening to the cardiac output?
Moving along a parabola A particle moves along the parabola

= x2 in the first quadrant in such a way that its x-coordinate
(measured in meters) increases at a steady 10 rn/sec. How fast is
the angle of inclination 0 of the line joining the particle to the
origin changing when x = 3 m?
Motion in the plane The coordinates of a particle in the metric
‘-planc are differentiable functions of time t with dx/dt =
—l m/sec and dy/dt = —Sm/sec. How fast is the particle’s dis
mnce from the origin changing as it passes through the point
(5, 12)?

Videotaping a moving car You are videotaping a race from a
stand 132 ft from the track, following a car that is moving at
180 mi/h (264 ft/sec), as shown in the accompanying figure.
How fast will your camera angle U be changing when the car is
right in front of you? A half second later?

39. A moving shadow A light shines from the top of a pole 50 ft
high. A ball is dropped from the same height from a point 30 ft
away from the light. (See accompanying figure.) How fast is the
shadow of the hall moving along the ground 1/2 sec later?
(Assume the ball falls a distance s = 16(2 ft in (sec.)

Light

JNShadn
0 xQ)

40. A building’s shadow On a morning of a day when the sun will
pass directly overhead, the shadow of an 80-ft building on level
ground is 60 ft lung. At the moment in question, the angle 0 the
sun makes with the ground is increasing at the rate of 0.27°/mm.
At what rate is the shadow decreasing? (Remember to use radians.
Express your answer in inches per minute, to the nearest tenth.)

42. Highway patrol A highway patrol plane flies 3 mi above a
level, straight road at a steady 120 mi/h. The pilot sees an
oncoming car and with radar determines that at the instant the
line-of-sight distance from plane to car is 5 ml, the line-of-sight
distance is decreasing at the rate of 160 mi/h. Find the car’s
speed along the highway.

43. Baseball players A baseball diamond is a square 90 ft on a
side. A player rens from first base to second at a rate of 16 ft/sec.
a. At what rale is the player’s distance from third base changing

when the player is 30 ft from first base’?
b. At what rates are angles O and 02 (see the figure) changing

at that time?

Camera

41. A melting Ice layer A spherical iron ball 8 in. in diameter is
coated with a layer of ice of uniform thickness. If the ice melts at
the rate of 10 in3/mmn, how fast is the thickness of the ice
decreasing when it is 2 in. thick? How fast is the outer surface
area of ice decreasing?
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c. The player slides into second base at the rate of 15 ft/sec. At
what rates are angles 8 and 82 changing as the player
touches base?

44. Ships Two ships are steaming straight away from a point 0
along routes that make a 1200 angle. Ship A moves at 14 knots
(nautical miles per hour, a nautical mile is 2000 yd). Ship B
moves at 21 knots. How fast are the ships moving apart when
OA = 5 and OR = 3 nautical miles?

45. Clock’s moving hands At what rate is the angle between a
clock’s minute and hour hands changing at 4 o’clock in the after
noon?

Sometimes we can approximate complicated functions with simpler ones that give the
accuracy we want for specific applications and are easier to work with. The approximating
functions discussed in this section are called linearizarions, and they are based on tangent
lines. Other approximating functions, such as polynomials, are discussed in Chapier 10.

We introduce new variables it and dy, called differentials, and define them in a way that
makes Leibniz’s notation for the derivative dy/dr a true ratio. We use dy to estimate error in
measurement, which then provides for a precise proof of the Chain Rule (Section 3.6).

Linearization

As you can see in Figure 3.50, the tangent to the curve y = x2 lies close to the curve near
the point of tangency. For a brief interval to either side, the y-values along the tangent line

:},;
0

y = x2 and its tangenty 2x — I at , I).

- y=x2,.

/3’ = Zr —

• (1.1)

/1

0

Tangent and curve very close near (I. 1).

0.8

Tangent and curve very close throughout
entire x.interval shown.

7
Tangent and curve closer still. Computer
screen cannot distinguish tangent 1mm
curve on this x-intervul.

46. Oil spill An explosion at an oil Hg located in gulf waters causes
an elliptical oil slick to spread on the surface from the Hg. The slick
is a constant 9 in. thick. After several days, when the major axis of
the slick is 2 mi long and the minor axis is 3/4 mi wide, it is deter.
mined that its length is increasing at the rate of 30 ft/br, and its
width is increasing at the rate of tO ft/br. At what rate (in cubic feet
per hour) is oil flowing from the site of the Hg at that time?

I
I

3. 11 Linearization and Differentials

I.

1.2 1003

1.2
0.8 0.9!7

_________-J

L003

FIGURE 3.50 Themorewemagnifythe graph ofaflinction neara point where the func
tion is differentiable, the flatter the graph becomes and the more it resembles its tangent.
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to obtain

or

‘no

‘Vi —

7 ,\ 1I, v \ I
+ = mo + mov2(j).

_

1 2”rn ± —m0v I2 \r
Equation (3) expresses the increase in mass that results from the added velocity v.

Converting Mass to Energy

(3)

Equation (3) derived in Example 9 has an important interpretation. In Newtonian physics,(1 /2)rn0v2 is the kinetic energy (KB) of the object, and if we rewrite Equation (3) in theform

we see that

or

2(m — m0)c

(m — m0)c2 mov2 = mov2 — ma(O)2 =

(Am)c2 tl(KE).
So the change in kinetic energy tS(KE) in going from velocity 0 to velocity v is approximately equal to (Am)c2, the change in mass times the square of the speed of light. Usingc 3 X lO m/sec, we see that a small change in mass can create a large change inenergy.

b. f(x)
=

it dif
;e cit.
Nays:

by
[‘Si.

I. f(x)x3—2x+3, a2
2.f(x)Vx2+9, a—4

12. f(x) —f—i, a = 1.3

13. f(x) = e, a = —0.1
14. f(x) sinx, a = ir/12
15. Show that the linearization of f(x) = (I ÷ x)k at x 0 isL(x) = I + kr.
16. Use the linear approximation (I + x)k I ± Ia to find anapproximation for the function f(x) for values of x near zero.

7

--

jxercises
Finding Linearizations

‘. In Exercises 1—5, find the linearization L(x) of fG) at x = a.

3.fc)=x+i, a1
4. f(x)i’, a—8

a=1T

6. Common linear approximations at x = 0 Find the lineatiza[ions of the following functions at x = 0.
. sinx b. cosx c. tanx ci. é e. ln(1 +x)

Linearization for ApproximationIn Exercises 7—14, find a linearization at a suitably chosen integer nearUt Which the given function and its derivative are easy to evaluate.
a0.l

S.f(x)i a0.9
.t 9.fx)2+3x_3, a—0.9

• iL..ç a8.5

a. f(x) (I —

c. fG) =

e. f(x) (4 + 3x)’13

d. f(x) =

31/
f. f(x)

= —

a. (J•0002)5D

17. Faster than a calculator Use the approximation (1 + x?I + Ia to estimate the following.

b9
18. Find the linearization of f(x) = + sin x at x = 0. Howis it related to the individual linearizations of vTTT and sin xat x = 0?
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32. y = xe’

0.5 in.
6in.fw-

3Oin.

54. Estimating height of a building A suneVor, standing 30 ft
from the base of a building, measures the angle of elevation to the
top of the building to be 75°. How accurately must the angle be
measured for the percentage error in estimating the heighi of the
building to be less than 4%?

55. The radius r of a circle is measured with an error of at most 2%,
What is the maximum corresponding percentage error in comput
ing the circle’s

a. circumference? b. area?

56. The edge x of a cube is measured with an error of at most 05%.
What is the maximum corresponding percentage error in comput
ing the cube’s

a. surface area? b. volume?

57. Tolerance The height and radius of a right circular cylinder are
equal, so the cylinder’s volume is V = irh3. The volume is to be
calculated with an error of no more than 1% of the true value.
Find approximately the greatest error that can be tolerated in the
measurement of ft. expressed as a percentage of h.

58. Tolerance

a. About how accurately must the interior diameter of a
l0-m-high cylindrical storage tank be measured to calculate
the tank’s volume to within 1% of its true value?

b. About how accurately must the tank’s exterior diameter be
measured to calculate the amount of paint it will take to paint
the side of the tank to within 5% of the true amount?

59. The diameter of a sphere is measured as 100 ± 1 cm and the
volume is calculated from this measurement. Estimate the per
centage error in the volume calculation.

60. Estimate the allowable percentage error in measuring the diameter V
of a sphere if the volume is to be calculated correctly to within 3* f
The effect of flight maneuvers on the heart The amount O

work done by the heart’s main pumping chamber, the left ventw
cle, is given by the equation

V8v2w=Pv+—,
2g

20. y = xVTZ

2v
22. y

= 30 + )
1 3/124. xr—4x’—y=O

26. y = cos (x2)

28. y = sec (x2 — 1)

30. y2cot(z)

49. The change in the volume V = irr2h of a right circular cylinder
when the radius changes from ra to r0 + dr and the height does
not change

50. The change in the lateral surface area S = 2nrh of a right circu.
lar cylinder when the height changes from h0 to + dh and the
radius does not change

Applications
51. The radius of a circle is increased from 2.00102.02 m.

a. Estimate the resulting change in area.

b. Express the estimate as a percentage of the circle’s original area.
52. The diameter of a tree was 10 in. During the following year, the

circumference increased 2 in. About how much did the tree’5
diameter increase? The tree’s cross-sectional area?

53. Estimating volume Estimate the volume of material in a cylin
drical shell with length 30 in., radius 6 in., and shell thickness 0.5 in,

Derivatives in Differential Form
In Exercises 19—38, find dy.

19. y = x3 — 3V

21. v =
,- r

23. 2v3’2 + .xy — a = 0

25. y = sin (5vi)

27. y = 4tan (x3/3)

29. y = 3 csc(l — 2Vc)

31. y =

33. yln(l +) 34. y1n(

35. y = mnfr) 36. y = cor’ () + cor’ 2x

37. y = sec”(e”) 3& y =

Approximation Error
In Exercises 39—44, each function f(x) changes value when a changes
from x0 to a0 ÷ dx. Find

a. the change Af fix0 + dx) — f(x0);

b. the value of the estimate df f’(x0) dx; and

c. the approximation error If — df I.

A

dx) —fix0)

(xo,f(xo))

Tangent

0 a0 x0+dr

39. f(x)x2+2x, x I, dxO.l

40.f(x)2x1+4x—3, x0—l, dx=O.1

41. f(x)x3—x, x01, dx=0.1

42. f(x)x4, x01, dx0.l

43. f(x) = a”t, = 0.5, dx = 0.1

44.f(x).x3—Zt+3, x02, dxO.1

Differential Estimates of Change
In Exercises 45—50, write a differential formula that estimates the
given change in volume or surface area.

45. The change in the volume V = (4/3)rrr3 of a sphere when the
radius changes from to r0 + dr

46. The change in the volume V = a3 of a cube when the edge
lengths change from a9 to a0 ± dx

47. The change in the surface area S = 6x2 of a cube when the edge
lengths change from Xt, to a0 + dx

48. The change in the lateral surface area S = irr,,/r2 + h2 of a right
circular cone when the radius changes from r0 to i’o + dr and the
height does not change

dx

x

61.



.1,½ = a t (a, 1, constant).

As a member of NASA’s medical team, you want to know how
sensitive W is to apparent changes caused by flight maneuvers,
and this depends on the initial value of g. As pan of your investiga
tion. you decide to compare the effect on 11’ of a given change dg
on the moon, where g = 5.2 ft/sec2. with the effect the same
change dg would have on Earth, where g = 32 ft/sec2. Use the
simplified equation above to find the ratio of dW,,,,, to dWa,,h.

62. Drug concentration The concentration C in milligrams per
milliliter (mg/mi) of a certain drug in a person’s bloodstream
hrs after a pill is swallowed is modeled by

CU) I + j—;-p —

Estimate the change in concentration when r changes from 20 to
30 mm,

b 63. Unclogging arteries The formula V = kr’, discovered by the
physiologist Jean Poiseuille (1797—1869), allows us to predict how’

J much the radius of a partially clogged artery has to be expanded in
order to restore normal blood flow. The formula says that the vol
ume V of blood flowing through the artery in a unit of time at a
fixed pressure is a constant k times the radius of the artery to the
fourth power. How ‘viii a 10% increase in r affect V?

64. Measuring acceleration of gravity When the length L of a
clock pendulum is held constant by controlling its temperature,
the pendulum’s period T depends on the acceleration of gravity g.
The period will therefore vary slightly as the clock is moved from
place to place on the earth’s surface, depending on the change in
g. By keeping track of AT, we can estimate the variation in g
from the equation T 27r(L/g)” that relates 7’, g, and L.
a. With 1. held constant and g as the independent variable, cal

culate dT and use it to answer pans (b) and (c),
h. If g increases, will T increase or decrease? Will a pendulum

clock speed up or slow down? Explain.
C. A clock with a 100-cm pendulum is moved from a location

where g = 980 cm/sec2 to a new location. This increases the
period by dT = 0.001 sec. Find dg and estimate the value of
g at the new location.

65, Quadtic approximations
a. Let Q(x) = b1 + b(x — a) + b,(s — a)2 be a quadratic

approximation to f(s) at x = a with the properties:
i) Q(c) = f(a)

ii) Q’(a) = f’(a)
iii) Q”(a) = f”(a).

Determine the coefficients b0, b1, and b,.
Find the quadratic approximation to fix) I/fl — x) at
x = 0.
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c. Graph f(s) = I/O — x) and its quadratic approximation at
x = 0. Then zoom in on the two graphs at the point (0, I).
Comment on what you see.

d. Find the quadratic approximation to g(x) = 1 /x at x = 1.
Graph g and its quadratic approximation together. Comment
on what you see.

a Find the quadratic approximation to li(s) = at
x = 0. Graph Ii and its quadratic approximation together.
Comment on what you see.

1. What are the tinearizations off, g, and Is at the respective
points in parts (b), (d), and (e)?

66. The linearization is the best linear approximation Suppose
that y = f(s) is differentiable at x = a and that g(x)
m(x — a) + a is a linear function in which in and care constants.
if the error E(x) = f(s) — g(x) were small enough near x = a,
we might think of using g as a linear approximation off instead
of the linearization [Ax) = f(a) + f’(a)(x — a). Show that if we
impose on g the conditions

1. E(a) = 0 The approximation error is zero at x = a.

E(x)
2. limy-HO

then gr) = f(a) + f’(a)(x — a). Thus, the linearization L(s)
gives the only linear approximation whose error is both zero at
x = a and negligible in comparison with x — a.

67. The linearization of 2’

Some other linear
approximation, g(x):
y m(s — a) + c

a. Find the linearization of f(s) = 2’ at x = 0. Then round its
coefficients to two decimal places.

b. Graph the linearization and function together for
—3x3and—] x I.

68. The linearization of Iog3s

a. Find the linearization of f(x) = Iog3x at x = 3. Then round
its coefficients to two decimal places.

W b. Graph the linearization and function together in the window
0 x S 8 and 2 s s 5 4.

COMPUTER EXPLORATIONS
In Exercises 69—74, use a CAS to estimate the magnitude of the error
in using the linearization in place of the function over a specified
interval L Perform the following steps:

a. Plot the function f over L

Ii. Find the linearization L of the function at the point a.
e. Plot f and L together on a single graph.

1
where ½’ is the work per unit time, P is the average blood pres
sure, Vis the volume of blood pumped out during the unit of time,
o cdelta”) is the weight density of the blood, u is the average
locity of the exiting blood, and g is the acceleration of gravity.

When P. V. 8, and v remain constant, W becomes a function
of g. and the equation takes the simplified form

i.
The error is ncgligihle when compared
with s — a.

The linearization. L(x):
y f(a) + f’(aXs — a)

w
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Solution Figure 4.8 suggests that f has its absolute maximum value near x 3 and Its
absolute minimum value of 0 at x = e2. Let’s verify this observation.

We evaluate the function at the critical points and endpoints and take the largest and
smallest of the resulting values.

The first derivative is

f(s) = 10(2 — lnx) — lar(}) = 10(1 — Ins).

Solution We evaluate the function at the critical points and endpoints and take the larg
est and smallest of the resulting values.

The first derivative

f’(x) =

=

has no zeros but is undefined at the interior points = 0-The values of f at this one critic$
point and at the endpoints are

Critical point value: f(0) = 0

Endpoint values: f(—2) = (_2)2/3 =

Finding Extrema from Graphs 3. y

Th Exercises 1—6, determine from the graph whether the function has
any absolute extreme values on [a. b] - Then explain how your
answer is consistent with Theorem I

f(3) = (3)2/3 =

30

25

20

15

I0

5

- (e, IDe)

0)

FIGURE 4.8 The extreme values of
f(x) = lOx(2 — ins) on [i,e2] occur at
x e and x = c2 (Example 3).

The only critical point in the domain [1, e2] is the points = e, where Ins 1. The al.
0 1 2 3 4 5 6 7 8

‘‘

ues off at this one critical point and at the endpoints are

Critical point value: f(e) = lOe

Endpoint values: f(l) = 10(2 — In 1) = 20

f(e2) = 10e2(2 — 2lne) = 0.

We can see from this list that the function’s absolute maximum value is lOe 27.2; j
occurs at the critical interior point x = e. The absolute minimum value is 0 and occurs at
the right endpoint x = e2. I

EXAM PLE 4 Find the absolute maximum and minimum values of f(x) = 52/j on the
interval [—2,3].

y—x2/3. —2x3

Absolute maximum;
also a local maximumLocal

maximum

u

7.

..ci

—z —i 0 1 2 3
Absolute minimum;
also a local minimum

FIGURE 4.g The extreme values of
f(s) =

2/3 on [—2,3] occurat x = 0
and x = 3 (Example 4).

Exercisesm

We can see from this list that the function’s absolute maximum value is 5 2.08, and

it occurs at the right endpoint x = 3. The absolute minimum value is 0, and it occurs lj

the interior point x = 0 where the graph has a cusp (Figure 43). ij

1. 2.

y = h(s) y f(x)

V

I I I

4.

. S

I

0

-A

-SI

a c h

— I I

a c b

0 a c 6

0 a c1 c2 I, U
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In Exercises 15—20, sketch the graph of each function and determinewheLher the function has anyabsolute extreme values on its domain.• y = g(x) Explain how your answer is consistent with Theorem 1.

::: :,:z1<:::,
1—x, OSx<Ia c b 17.g(x)
Ut—I, 15x52

—lx<0
18. h(x) =

[¼ 0x4
19. y3sinx, 0<x<2ir

Ix± 1, —{ x<0
20.f(x)4 711. cosx,

Absolute Extrema on Finite Closed Intervals
In Exercises 2140, find the absolute maximum and minimum valuesof each function on the given interval. Then graph the function. Identify the points on the graph where the absolute extrema occur, andinclude their coordinates.

21. f(x)x—5, —2xs3

22. f(x)—x—4, —4x I
23.f(x)’x2—1, —1x2
24.f(x).4—x3, —2xSl

_____________

25. F(x)—-1j, 0.55x52

26. F(x)—, —2xs—I

27. I4x) ‘G, —i Sx8

_________________

28. h(x) = —3x21, —l x 1
29. g(x)=V4_x2, —2x I

______________

30. g(x)—VK7, —Vx0

31. f(O)sinO,

_________________

32. f(O) = tanG, — SO S

2w33. g(x) = cscx, ‘ s x

34.g(x)secx, fr
35. fQ) = 2— H —i
36. f(c)= 45t57

37. g) xC’, —1 x I
38. h(x)1n(x+ I), OSx3

39. f(x)+1nx, 0.5x4

40. g(x)e’, —2x1

3 and j j.: 5.

¼

rhe vaj.

0

ocCUr

y

—1

y 6.

y = g(x)

H

_
_

c b
X —

________________

7—10. find the absolute extreme values and where they

8.

10.

Exercises 11—14, match the table with a graph.

1. f’(x) 12.

x
2

x

2

0a
b 0

5

x f’(x)

a 0
b 0
C —5

f(s)

a

14.

b
does not exist

0
c —2

I

x f’(x)

a does not exist
b does not exist
C —1.7

(a) (b)

(c)
L

(d)
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In Exercises 41—44, find the functions absolute maximum and mini- Theory and Examplesmum values and say where they are assumed. 79. A minimum with no derivative The function f(x) = x) has41- f(x) = x4/3, — I x S an absolute minimum value at x 0 even though f is not differ.
entiable at x = 0. Is this consistent with Theorem 2? Give rea.

42- f(x)x5/3, —l xB
Sons for your answer.43. g(O)=0315, —32Ol

80. Even functions If an even function f(x) has a local maximum44. h(O) = 3Q2, 27 S B S 8
value at x = c, can anything be said about the value of f at
x —c? Give reasons for your answer.Finding Critical Points

in Exercises 45—52, determine all criticaL points for each function. 81. Odd functions If an odd function g(x) has a local minimum
45. y = — &r ± 7 46. f(x) 6t —

value at x = c, can anything be said about the value of g at
x = —c? Give reasons for your answer.47. f(x) = x(4 — x)3 48. g(x) = (x — 1)kx — 3)2

82. No critical points or endpoints exist We know how to find the49. v x + 50. f(x)
= —2 extreme values of a continuous function f(x) by investigating

_______

values at critical points and endpoints. But what if there are no criti.51. y = — 32V 52. g(x) = — cal points or endpoints? V,That happens then? Do such functions
really exist? Give reasons for your answers.Finding Extreme Values

In Exercises 53—68, find the extreme values (absolute and local) of the 83. The function
function over its natural domain, and where they occur. V(x) = x( 10 — 2x)( 16 — 2x), 0 <x < 5,53. y=2x_8x+9 54. yx3—Zx+4

models the volume of a box.55. yx3+.—+5 56. yx3(x—59
a. Find the extreme values of V.57. y Vni 58. yx—4’v&
b. Interpret any values found in part (a) in terms of the volume f59.y2 60y=V3+lt_x2 ofthebox.

84. Cubic functions Consider the cubic function61.y X
62. x+l

x2+1 ‘+Zr+2 fx)ax3+bx2+ct+d.
63. y = Cr + e1 64. y = — C’ a. Show thatf can haveG, l,or2critical points. Give examples65. y = x Inx 66. y = x2 In and graphs to support your argument.
67. y = coC’ (x2) 68. y = sin’(Cr) b. How many local extreme values can f have?

85. Maximum height of a vertically moving body The height of aLocal Extrema and Critical Points
body moving vertically is given byIn Exercises 69—76, find the critical points, domain endpoints, and

extreme values (absolute and local) for each function.
+ +

, g > 0,69. y = x2/3(x + 2) 70. y x2/3(x2 —4) S =

71. y = xV’4 — 72. y x2\/ZZ
withsin meters and tin seconds, Find the body’s maximum heigh14 — it, x I {3 — x, x < 0 86. Peak alternating current Suppose that at any given time t0d73. Y =

—

— x, x o seconds) the current i (in amperes) in an alternating current elm
x+l, x>l

—x2 — 2x + 4, x < j cuit is I = 2cos r + 2 sint. What is the peak current for this cirL
= j_ ÷ — , . > cuit (largest magnitude)?

W Graph the functions in Exercises 87—90. Then find the extreme value5( I
.. A 1,

of the function on the interval and say where they occur.
I——x-— t+ x

76. = < 4 2 4
87. f(x)= x—2j + x+31, —5x55lx3_6x2+8x, x>l
88. g(x) = lx — I

— Ix — 5, —2 S x S 7In Exercises 77 and 78, give reasons for your answers. 89. h(x) = Jx + 2! — Ix — 3j; —00 < x < 0077. Letf(x)(x—2)273.
90. k(x) 11± Ij ÷ ‘—31, —00<x<00a. Does f’(2) exist?
COMPUTER EXPLORATIONSb. Show that the only local extreme value of f occurs at x = 2. in Exercises 91—98, you will use a CAS to help find the ab50It:c. Does the result in part (b) contradict the Extreme Value extrema of the given function over the specified closed interval. PTheorem? form the following steps.

d. Repeat pans (a) and (b) for f(x) (x — 0)1/3, replacing 2 a. Plot the function over the interval to see its general behavior there’by a.
b. Find the interior points where f’ 0. (In some exercises, Y078. Let f(x) = I’3 — 9x1. may have to use the numerical equation solver to approxitflatC

a. Does [(0) exist? b. Does f’(3) exist? solution.) You may want to plot f’ as well.
c. Does [(—3) exist? d. Determine all extrema of j. c. Find the interior points where f’ dues not exist.
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Evaluate the function at all points found in parts (b) and (c) and atj me endp0ints of the interval.

- Find the function’s absolute extreme values on the interval and
1oentfY where they occur.

f(x) x4 — 32 + 4x ÷ 2, [—20/25, 64/251

FTORICAL BIOGRAPHY
MlChe Rofle
(1652_I? 19)

We know that constant functions have zero derivatives, but could there be a more compli
cated function whose derivative is always zero? If two functions have identical derivatives
over an interval, how are the functions related? We answer these and other questions in
this chapter by applying the Mean Value Theorem. First we introduce a special case,
known as Rolle’s Theorem, which is used to prove the Mean Value Theorem.

Rolle’s Theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif
ferent points, there is at least one point between them where the tangent to the graph is
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.

THEOREM 3—Rolle’s Theorem Suppose that y = f(x) is continuous over
the closed interval [a, b] and differentiable at every point of its interior (a, b).
If f(a) = f(b), then there is at least one number c in (a, b) at which f’(c) 0.

Proof Being continuous, f assumes absolute maximum and minimum values on
[a, b] by Theorem I. These can occur only

1. at interior points where f’ is zero,
2. at interior points where f’ does not exist,
3. at endpoints of the function’s domain, in this case a and b.
By hypothesis, f has a derivative at every interior point. That rules out possibility (2),leaving us with interior points where f’ = 0 and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b. thenf’(c) = 0 by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.
If both the absolute maximum and the absolute minimum occur at the endpoints, then

because f(a) = f(b) it must be the case thatf is a constant function with f(x) = f(a) f(b)for every xc [a, b]. Therefore f’(x) = 0 and the point c can be taken anywhere in the
interior (a, b). S

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph
may not have a horizontal tangent (Figure 4.11).

RoPe’s Theorem may be combined with the Intermediate Value Theorem to show
when there is only one real solution of an equation f(x) = 0, as we illustrate in the nextexample.

EXAMPLE I

has exactly one real solution.

x3 ± it + I = 0

I

92.

3.

fGr) = —x3 ÷ 4x3 — 4x + I.

f(x) = x2(3 — x), [—2,2]

[—3/4,3]

94. f(x) 2 + it — 3x213, [—I, 10/3]
95. fix) = + cosx, [0, 27TJ

96. 1(x) = x3’4 — sinx + , [0, 2ir]

97. f(x) = irx2e342, [0,51
98. f(x) = ln(2x +xsinx), [1, 15]

The Mean Value Theorem

fCc) 0

V

Ft7°f;oTzc=
f(r)

n/a

.1

- x
c3

(b)

[FIGURE 4.10 Rolle’s Theorem says
a differentiable curve has at least nne

hotizontal tangent between any two points
it crosses a horizontal line. It may

have just one (a), or it may have mom (b).

I

Show that the equation
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Roots (Zeros)
17. a. Plot the zeros of each polynomial on a line together with the

zeros of its first derivative.

i) yx2—4

ii) yx2+Ex+ 15

iii) yr’—3ê+4(x+l)(x—2)2

iv) y—x3— 332 + 216xx(x—9)(x— 24)

b. Use Rolle’s Theorem to prove that between every two zeros
of x” + a,,_1x” + + a1x + a0 there lies a zero of

nx’ + (it — l)a4_1x’”2 + “‘ + °i

18. Suppose that f” is continuous on [a, 1’] and that f has three
zeros in the interval. Show that f’ has at least one zero in (a, b).
Generalize this result.

19. Show that 1ff” > 0 throughout an interval [a, b], then f’ has at
most one zero in [a, b] . What if f’ < 0 throughout [a, b] instead?

20. Show that a cubic polynomial can have at most three real zeros.

Show that the functions in Exercises 11—28 have exactly one zero in
the given interval.

21. f(x)x4+3x+ 1, [—2,—I]

22. fx)x3 ++7, (—cc,0)

23. g(t) = \4+ VFT—4, (0,)

24. gQ) = !_ + V1T —3.1, (—1,1)

25. O) = 0 + sin2() — 8, (—,)

26. r(6) 20— c&0 ÷ v’i, (—,)

27. r(0) = secA — 5, (0,42)

28. r(0) = tan8 — cot0 —0, (0,42)

Finding Functions from Derivatives
29. Suppose that f(—l) = 3 and that f(s) = 0 for all x. Must

f(s) = 3 for all x? Give reasons for your answer.
30. Suppose that f(0) = 5 and that f’(x) 2 for all x. Must f(s) =

Zr ÷ 5 for all x? Give reasons for your answer.
31. Suppose that f(s) = Zr for all x. Find f(2) if

a.f(0)=0 b.f(1)=O c.f(—2)3.
32. What can be said about functions whose derivatives are constant?

Give reasons for your answer.

In Exercises 33—38, find all possible functions with the given
derivative.

33.a.y’=x b.y’=x2 c.y’x3
34.a.y’=2x b.y’2x—1 cy’=3x2+2x—1

35. b.y’l—- c.y’5+-

;rCIS
r%heckinE the Mean Value Theorem

the value or values of c that satisfy the equation

f(b) — f(a) —
f’(c)b—a —

1;— - _.a.C — .ash-n,

1in the conclusion of the Mean Value Theorem for the functions and

‘J.intervals in Exercises 1—8.

jf(x)X2+2Xl. [0,1]

Z f(s) [0,1]

fCc) x+ [2]

4, fç = v’J, [1,3]

6.

f(s) = sinX, [—1.1]

fçr) = In (s — I), [2.4]

f(x)x312. [—1,2]7.

- 8.
Ix, —2x0

0<x2

wThich of the functions in Exercises 9—14 satisfy the hypotheses of the
Mean Value Theorem on the given interval, and which do not? Give
reasons for your answers.

9. f(x)x2’3, [—1,8]

10.

hri.A- 1•1.

f(s) = ?1, [0, 1]

f(s) = vi —s), [o,i]
1iii—, —irx<0

12. f(s) =
-t

10. x0

It2 — —2 S s< —l13, f(s) —
lZx-—3x—3, —l<x0

H14. 3,
6x_x27, 2<x3

15. The function

Cr, 0x<l
f(s)

= 0, x1

is zero at 0 and x = I and differentiable on (0, I), but its
derivative on (0, 1) is never zero. How can this be? Doesn’t
Rune’s Theorem say the derivative has to be zero somewhere in
(0, I)? Give reasons for your answer.

16. For what values of a, in, and b does the function

1. x=0
f(s) = —x2 + 35 ÷ a, 0 <x < I

lmx+b. lx52

satisfy the hypotheses of the Mean Value Theorem on the interval
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I , I36. a. h. =çï

37. a. y’ sin2t b. y’ =cos c. y’ sin2tcos

38. a. y’ .sec2O b. y’ = c. y’ = Vö_sec2O

In Exercises 3942, find the function with the given derivative whose
graph passes through the point P.

39. f’(x) = 2x — 1, F(0,0)

40. g’(x) = - + 2x, P(—1, 1)

41. f’(x) =

42. r’(t) = secttant — 1, P(O,0)

Finding Position from Velocity or Acceleration
Exercises 4346 give the velocity v = dr/dr and initial position of an
object moving along a coordinate line. Find the object’s position at
time t.

43. v9.8t+5, s(0) 10

44. v32t—2, s(0.5)4

45. v = sinin, SW) = 0

2 2t 246. vcosw, s(r)= 1

Exercises 47—50 give the acceleration a = d2s/d12, initial velocity,
and initial position of an object moving on a coordinate line. Find the
object’s position at time t.

47. ae’, v(0)20, s(0)5

48. a = 9.8, v(0) = —3, s(0) = 0

49. a = —4 sin 2t, v(0) = 2, s(0) = —3

50. a = 21cos, v(0) = 0, s(0) = —l

Applications
51. Temperature change It took 14 sec for a mercury thermometer

to rise from —19°C to 100°C when it was taken from a freezer
and placed in boiling water. Show that somewhere along the way
the mercury was rising at the rate of 8.5°C/sec.

52. A trucker handed in a ticket at a toll booth showing that in 2 hours
she had covered 159 mi on a toll road with speed limit 65 mph.
The trucker was cited for speeding. Why?

51 Classical accounts tell us that a 170-oar threme (ancient Greek or
Roman warship) once covered 184 sea miles in 24 hours. Explain
why at some point during this feat the trireme’s speed exceeded
7.5 knots (sea or nautical miles per hour).

54. A manthoner ran the 26.2-mi New York City Marathon in 2.2 hours.
Show that at least twice the marathoner was running at exactly 11
mph, assuming the initial and final speeds are zero.

55. Show that at some instant during a 2-hour automobile trip the car’s
speedometer reading will equal the average speed for the trip.

56. Free fall on the moon On our moon, the acceleratiun of gravity
is 1.6 m/sec2. If a rock is dropped into a crevasse, how fast will it
be going just before it hits bottom 30 sec later?

Theory and Examples •1
57. The geometric mean of a and b The geometric mean of.

twu positive numbers a and b is the number Show that
the value of c in the conclusion of the Mean Value Theorem
for f(x) = l/x on an interval of positive numbe
[a,b] isc =

58. The arithmetic mean of a and b The arithmetic mean of two
numbers a and his the number (a + b)/2. Show that the value of
c in the conclusion of the Mean Value Theorem for f(x) = x2 un
any interval [a, b] is c = (a + b)/2.

59. Graph the function

f(x) = sinxsin(x + 2)— sin2(x + 1).

What does the graph do? Why does the function behave this way?’
Give reasons for your answers.

60. Rolle’s Theorem

a. Construct a polynomial f(x) that has zeros at x = —2,— 1,0,
I, and 2.

b. Graph f and its derivative f’ together. How is what you see
related to Rolle’s Theorem?

c. Do g(x) = sin x and its derivative g’ illustrate the same phe
nomenon as f and f’?

61. Unique solution Assume that f is continuous on [a, I,] and;
differentiable on (a, b). Also assume that f(a) and f(b) have
opposite signs and that f’ 0 0 between a and b. Show that;;
f(x) = 0 exactly once between a and b. j

62. Parallel tangents Assume that f and g are differentiable on
[a, b] and that f(a) = g(a) and f(b) = g(b). Show that there i
at least one point between a and b where the tangents to the.
graphs of f and g are parallel or the same line. Illustrate with a
sketch.

63. Suppose that f’(x) I for I x S 4. Show that f(4h
fO) s 3,

64. Suppose that 0 < f’(x) < 1/2 forallx-values. Showthatf(—l)
f(1) < 2 + f(—1).

65. Show that icosx — ii S lxi for all x-values. (Hint: Consider

fQ) = cost on [0,x].)

66. Show that for any numbers a and b, the sine inequality isinb
sinai Sib — al istnie.

67. If the graphs of two differentiable functions f(x) and g(x) start
the same point in the plane and the functions have the same rat
of change at every point, do the graphs have to be identical? Giv

reasons for your answer.

68. If if(w) — f(x)i S
— xi for all values wand x and f is a dif

ferentiable function, show that —1 S f’(x) I for all x.values’

69. Assume that f is differentiable on a S x S b and that f(b) <

Show that f’ is negative at some point between a and b.

70. Let f be a function defined on an interval [a, b]. What con&

tions could you place on f to guarantee that

where mm f’ and max f’ refer to the minimum and maxim°.
values offt on [a, b] 7 Give reasons for your answers.

c. y’ = 4x —

f(b) — f(a)
minf’S Smaxf’,

b—a
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75. Use the same-derivative argument, as was done to prove the
Product and Power Rules for logarithms, La prove the Quotient
Rule property.

76. Use the same-derivative argument to prove the identities

-l -l -I -Ia. tan x+cot b. Sec x+csc

77. Starting with the equation ëë = t’, derived in the text,
show that c’ = l/e’ for any real number x. Then show that

74 t f(x) = p.r2 ÷ qx + r he a quadratic function defined on a = exrx3 for any numbers x1 and x2.

closed interval [a, Li]. Show that there is exactly one pointc in (a, Li) 78, Show that (t1 = = (eI)X1 for any numbers x and .ra.
- at which f satisfies the conclusion of the Mean Value Theorem.

4.3 Monotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function, it is useful to know where it increases
(rises from left to right) and where it decreases (falls from left to right) over an interval. This
section gives a test to determine where it increases and where it decreases. We also show how
to test the critical points of a function to identi1 whether local extreme values are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive
derivatives are increasing functions and functions with negative derivatives are decreasing
functions. A function that is increasing or decreasing on an interval is said to be mono-
tonic on the interval.

Proof Letx1 andx2beanytwopointsin [a,b] withx1 <x,.TheMeanValueTheo
rem applied to f on Ix,, x,] says that

fCrz) — f(x1) = f’(c)(x, —x,)
for some c between xl and x,. The sign of the right-hand side of this equation is the same
as the sign of f’(c) because x, — x is positive. Therefore, f(x,) > f(x1) if ft is positive
on (a, b) and f(x2) < f(x1) if f’ is negative on (a, b).

Corollary 3 tells us that f(x) V is increasing on the interval [0, Li] for any
b > 0 because f’(x) = l/’v& is positive on (0, b). The derivative does not exist at x = 0,
but Corollary 3 still applies. The corollary is valid for infinite as well as finite intervals, so
f(x) = V is increasing on [0, cG).

To find the intervals where a function f is increasing or decreasing, we first find all of
the critical points of f. if a < b are two critical points for f, and if the derivative f’ is
continuous but never zero on the interval (a, Li), then by the Intermediate Value Theorem
applied to f’, the derivative must be everywhere positive on (a, Li), or everywhere negative
there. One way we can determine the sign of f’ on (a, Li) is simply by evaluating the
derivative at a single point c in (a, Li). If f’(c) > 0, then f(x) > 0 for all x in (a, Li) sof
is increasing on [a, Li] by Corollary 3; if f’(c) ‘C 0, then f is decreasing on [a, Li] - The
next example illustrates how we use this procedure.

Use the inequalities in Exercise 70 to estimate f(0.l) if f’(x) =

4j71/(l÷x4cosx)for0SxS0.landf(0)l.

use the inequalities in Exercise 70 to estimate f(0.I) if f(x) =

11(1 — .r3) forD x 0.1 and f(0) = 2.

Let f be differentiable at every value of x and suppose that

- fU) = l,thatf ‘C Oon(—oO, l),andthatf’ > 0on().

a. Show that f(x) 1 for all x.

b. Must f’(l) 0? Explain.

COROLLARY 3 Suppose that f is continuous on [a, Li] and differentiable on
(a,b).

If f’(x) > 0 at each point x e (a, Li), then f is increasing on [a, Li].

If f’(x) < Oat each point x e (a, Li), then f is decreasing on [a, Li].
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EXAMPLE 3 Find the critical points of

f(x) = (x2 — 3)ex

FIGURE 4.23 The graph of
f(x) = (2 3)e’ (Example 3).

-V

Identify the open intervals on which f is increasing and decreasing. Find the function’s 1local and absolute extreme values.

Solution The function f is continuous and differentiable for all real numbers, so thecritical points occur only at the zeros of f’.
Using the Derivative Product Rule, we find the derivative

f’(x) = (xt
— 3)le + (x- — 3)e

= (x — 3)-e’ + (2x)•ë
= (x2 + 2x - 3)?.

Since e’ is never zero, the first derivative is zero if and only if

x2 + 2x —3 = 0

(x + 3)(x — I) = 0.

The zeros x = —3 and x = I partition the x-axis into open intervals as follows.

Interval x<—3 —3<x<I 1<x
Signoff’ +

— +
increasing decreasing increasingBehavioroff

I I I
—4 —3 —2 —l 0 1 2 3

We can see from the table that there is a local maximum (about 0.299) at x —3 anda local minimum (about —5.437) at x = I. The local minimum value is also an absojlute minimum because f(x) > 0 for lxl > ‘/3. There is no absolute maximum. The:function increases on (—oo, —3) and (1, 00) and decreases on (—3, 1). Figure 4.23shows the graph.

1. f’(x) = x(x — I)

f’(x) = (x —
l)2CV + 2)

f’(x) (x — fle2

f’(x) = (x — 7)(x + l)(x ÷ 5)
r(x

— I)7. f’(x) x—2x+2
(x—2)(x+4)8. f(x)=+ IX 3)’

xø—l,3

— 3)X

—4

—5

—6

- -- -.

—

Exercises
Analyzing Functions from Derivatives
Answer the following questions about the functions whose derivatives
are given in Exercises 1—14:

a. What are the critical points of f?
b. On what open intervals is f increasing or decreasing?
c. At what points, if any, does f assume local maximum and mini

mum values?

2. f’(x) = (x — IXx + 2)
4. flx) = (x — l)2(x + 2)2

1

3.

5.

6.

11. f’(x) = t”3(x ÷ 2) 12. f’x) = — 3)
13. f’(x) = (sinx — l)(2cosx + l),0 S x S 2r
14. f’(x) = (sinx + cosx)(sinx — cosx),O S x S 2ir

Identifying Extrema
In Exercises 15—44:

a. Find the open intervals on which the function is increasing and
decreasing.

b. Identify the function’s local and nbsolute extreme values, Ii
any, saying where they occur.

16.15.

9. f’(x) I —4, x 0 10. f’x) = 3 — x 0

-VhrL:t JLZ1
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20. gQ) =
32 ÷ 9: + 5

22. h(x) = Zr3 — l&r

24. f(O) = 68 —

26. h(r) = (r ÷ 7)3

28. g(x) = x4 — 4x3 + 4x2

30. K(t) = j53
—

32. g(x) = 4Vx — x2 + 3

34. g(x) = x2vZZ

____

x336. f(x)
= 2 +

38. g(x) = x2/3(x + 5)

40. k(x) = x2’3(x2 — 4)

42. f(x) =

44. f(x) = x2lnx

a. Identify the function’s local extreme values in the given
domain, and say where they occur.

Which of the extreme values, if any, are absolute?

Support your findings with a graphing calculator or computer
grapher

f(x) = 2x — x1, — <x 2

f(x)(x+1)2, —oO<xO

g(x)=x2—4x+4, 1x<DO

—9, —4x<oc

—3 S j

—Co < t 5 3

x3+3x2+3x+l, —OO<xO

‘J25-x -55x55

Vx2-Zx-EL 35x<co

Osx’<l
— I

—2<zl
4 —

Find the local extrema of each function on the given interval,
and say where they occur.

Graph the function and its derivative together. Comment on the
behavior of fin relation to the signs and values of f’.

57. f(x)sin2x, OSxr

58. f(s) = sins — cosx, 05 i 2,,-

59. f(s) = V’cosx + sinx, 0 x 2,r

—IT IT60. fC—2x+ tans. ——<x<

61. f(x)=’—2sin, OxS2IT

62. f(s) = —2cosx — cos2x, —ir Si Sir

63.f(x)=csc2x—2cotx, O<x<ir

64. f@).sec2x—2tanx,

Theory and Examples
Show that the functions in Exercises 65 and 66 have local extreme
values at the given values of 0, and say which kind of local extreme
the function has.

65. h(&) = 3co4. 0565 2,r, atO = Oand8 =

66. h(9)5sin, OSOSr, at9=OandO=r

67. Sketch the graph of a differentiable function y = f(s) through
thepoint(1, 1)iff’(l) = Oand

a.f’(x) > Oforx < I andf’(x) < Oforx > I;
b. f ‘(x) 0 for land f ‘(x) > 0 for I;

c. f(s) > Ofors I;

d. f’(x) < Oforx 0 1.

68. Sketch the graph of a differentiable function y = f(s) that has

a. a local minimum at (1, 1) and a local maximum at (3, 3);

b. a local maximum at (1, 1) and a local minimum at (3, 3);

c. local maxima at (1, 1) and (3, 3);

d. localminimaat(l, l)and(3,3).

69. Sketch the graph of a continuous function y = g(s) such that

a.g(2)=2,0<g’<lforx<2,g’(x)—rasx—-’2,
—1<g’<0forx>2,andg’(x)—1asx—2;

ii. g(2) = 2,g’ < Oforx < 2,g’(x)—.—coasx—.2”,
g?>Oforx>2,andg(x)_coasx_÷2t,

70. Sketch the graph of a continuous function y = h(x) such that

a. h(0) = 0,—2 S h(s) S 2forallx,h’(x)—coasx-.W,
and h’(x) —. DC ass —.

b. h(0)0,—2Sh(x)0forallx,h’(x)—coasx—.y,
and h’ç) —, — as x —.

71. Discuss the extreme-value behavior of the lunction f(s) =

xsin (l/x), x 0. How many critical points does this function
have? Where are they located on the s-axis? Does f have an abso
lute minimum? An absolute maximum? (See Exercise 49 in
Section 2.3.)

72. Find the open intervals on which the function f(s) = ax2 +
bx + c, a 0 0, is increasing and decreasing. Describe the
reasoning behind your answer.

73. Determine the values of constants a and /‘ so that f(s)
as2 + hi has an absolute maximum at the point (1, 2).

74, Determine the values of constants a, b, c, and d so that
f(x) as? + hi2 + cx + d has a local maximum at Ihe point
(0, 0) and a local minimum at the point (1, — I).

18.

- F-

-j

[19.

K25-
- 27.

gU) — 3: + 3

h(s) =
_3 + 2

f(O) = 392
— 40

f(r) = 3,3 + l6r

f(s) = 54
— &r2 ÷ 16

29. HU)
=

—

= —

= xy8 —

:3j, f(s)
3. g(x)

35. f(s)

f(s)
39. h(s)

41. f(s)
[43. f(s) xlnx

In Exercises 45—56:

2_3

x—2
xt/3(x + 8)

— 4)

e2’ + f-’

We.

V 47.

gG) = _2
- 6x

fQ) = 12: —

f(:) = g3 — 3:2

49.

r so.

-.,S1.

r $2.

53.

54.

k(s)

f(s)

1(x)

1’

0 Ee55 574:

db.
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75. Locate and identify the absolute extreme values of

a. in (cos x) on [—r/4, r/3 1.
b. cos (mx) on [1/2,2)

76. a. Prove that f(x) = x — lnx is increasing for x > 1.

b. Using part (a), show that mx < x if x > 1.

77. Find the absolute maximum and minimum values of f(x) =

e’—2xon [0,1).

78. Where does the periodic function f(x) = 2e””2 take on its

extreme values and what are these values?

79. Find the absolute maximum value of f(x) = x2lnO/x) and s,•
where it is assumed.

80. a. Provethate’ I + xifx 0.

b. Use the result in part (a) to show that

CT I + x + x2,

81. Show that increasing functions and decreasing functions are one.
to-one. That is, show that for any x1 and x2 in I, x2 x1 imph
f(x2) f(xt).

Use the results of Exemise SI to show that the functions in Exercises
82—86 have inverses over their domains. Find a formula for df_1/dJ

using Theorem 3, Section 3.8.

82. f(x) = (i/3)x + (5/6) 83. f(x) = 27x3

84. f(x) I —Sr3 85. f(x)(1 _x)3

86. f(x) = x1

We have seen how the first derivative tells us where a function is increasing, where it

decreasing, and whether a local maximum or local minimum occurs at a critical point. Ii

this section we see that the second derivative gives us information about how the graph c

a differentiable function bends or turns. With this knowledge about the first and secon4

derivatives, coupled with our previous understanding of symmetry and asymptotic behavi

ior studied in Sections 1.1 and 2.6, we can now draw an accurate graph of a function. B

organizing all of these ideas into a coherent procedure, we give a method for sketchir

graphs and revealing visually the key features of functions. Identifying and knowing d

locations of these features is of major importance in mathematics and its applications U

science and engineering, especially in the graphical analysis and interpretation of data.

Concavity

As you can see in Figure 4.24, the curve y = x3 rises as x increases, but the portioT

defined on the intervals (—, 0) and (0, 00) turn in different ways. As we approach thi

origin from the left along the curve, the curve turns to our right and falls below its

gents. The slopes of the tangents are decreasing on the interval (—00, 0). As we mo

away from the origin along the curve to the right, the curve turns to our left and rises nbO.,

its tangents. The slopes of the tangents are increasing on the interval (0, 00). This turn1fl

or bending behavior defines the concavity of the curve.

DEFINITION The graph of a differentiable function y = f(x) is

(a) concave up on an open interval I if f’ is increasing on I;

(b) concave down on an open interval I if f’ is decreasing on I.

If y = f(x) has a second derivative, we can apply Corollary 3 of the Mean Value Theot-

to the first derivative function. We conclude that f’ increases if f’ > 0 on!, and decrC’

1ff” < 0.

in(x/2)

0
x

4.4 Concavity and Curve Sketching

FIGURE 4.24 The graph of f(x)
is concave down on (—, 0) and concave

upon (0,Do) (Example Ia).
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%x)N<

Differentiable y’ >0 rises from y’ <0 fails from
smooth, connected; graph left to right; left to right;
may rise and fall may be wavy may be wavy

or
roTh

y”> U = concave up y’ <0 concave down y’ changes sign at an
throughout; no waves; graph throughout; no waves; inflection point
may rise or fall graph may rise or fall

or

y’ changes sign graph y’ = 0 and y’ < 0 y’ = 0 and y” > 0
has local maximum or local at a point; graph has at a point; graph has
minimum local maximum local minimum

figure summarizes how the first derivative and second derivative affect the shape of
graph

Analyzing Functions from Graphs
Identify the iaflection points and local maxima and minima of the
functions graphed in Exercises 1—8. Identify the intervals on which
the functions are concave up and concave down.

L 2.

. y:x+sin2x—1x1 6. IT
y=tanx—4x.—<x<f

x
/0

2ir
3

I
-U

7. yr sinlx, —2n Sx 2,r

0
x S

3. y = (x2
— l9”

N
y 2cosx

—

4. y = — 7)

4
NOT ID SCALE

I
Graphing Functions
In Exercises 9—58, identify the coordinates of any local and absolute
extreme points and inflection points. Graph the function.

9. y—4x+3 10. v6—2x— I
11. y — 3x ÷ 3 12. y = x(ó — Zr)2
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14.y1—9x—6x2—x’ 65.y’—(8x—5x2)(4—x)’ 66.y’=(x2—2x)(x—5)2
7T IT67. y =secx.

68.y’=tanx, —<x<

69.y’=co4, 0<8<2ir 70.y1csc2, O<O<2rr

71. J tan2G— I,

72. y’ = I — cot2O, 0<0<

73. y = cost, 0 s t s 2ir

74. y’ = slot, 0 S t 2ir

75. y’ = (x + 11213 76. y’ = (x — 2)’J’
71. y’ = 1213(x — I) 78. y’ = x’5(x ÷ 1)

f—Zr :50
79. y’ = 2x( =

12x, x>0
1x2, xSO

80. y =
1x2, x)0

18.

F -

20.

r

13. y = —Zr3 + 6:2
— 3

15. y = — 2)’ + I

j6.Y (x + 1)’

17. yX ir=xtX —2)

= —? + 6:2
— 4 = :2(6 — :2) — 4

19. y — .C = x’(4
—

x)

y x ÷ Zr’ = x(x + 2)

21. y = — 5x = x(x — 5)

22.

23. yX+5101. OsxS2ir

= x — sin:, Os :5

y..V5x2cosx. 0xS2ir

4 7T IT
y = — tan:, <.1<1

ySinXCOSX, OSxSIr

26.

27.
r. 22. y = cos: -r \/sinx.

29. y =

ft

0 x S 2ir

31.

‘‘530. y C

33. y = Zr —

2x+l

4

35. V
1/r — x

34. y = 5:2/5
— Zr

37. 3, = xV’8 — :2

36. y .r”(x — 5)

39. V = - 2

38. y C (2 —
:2)3/2

41. V
—

:2
— 3

— 2

Sketchingyfrom Graphs of y’ andy’
Each of Exercises 8 1—84 shows the graphs of the first and second
derivatives of a function y = f(x). Copy the picture and add to it a
sketch of the approximate graph of f, given that the graph passes
through the point P.

81. Y 82.

40. y = x +

43. y
8:

— :2 + 4

I
42. y =

45. V = j: — II

y = f”C

S44. y =
x + 5

I

47. V
1qz

=v=w

83.

46. y :2 — 2X1
x<O

48. y

-t 0

49. 3,
V

5I.

f’(x)

V = In(3 — .r2)

0

i —

. s3.

S.. 55.

y = — 2e’ — 3:

so.y=ç 84.

y

52. y sUn:)2

In (ens x)

54. y =

3,

In:56. y —

- 1 CV58. y=

0

Pt’57.

___

Sketching the General Shape, Knowing y
[ Each of Exercises 59—80 gives the first derivative of a continuous
.. function Y fGO. Find y” and then use Steps 24 of the graphing

procedure on page 249 to sketch the general shape of the graph of f.59.— -
h, 3

.61.
‘ — 3)2

60. y’ = —: - 6

Graphing Rational Functions
Graph the rational functions in Exercises 85—102 using all the steps in
the graphing procedure on page 249.

62. y’ 52(2—x)

64. y’ (x —
02(25 + 3)

252 + x —
85.y=

r-I
— 4986.

= 2 + 5: — 14

: +1 r—487. y= 88. y=
63, Y = (2 — 12)

89. y
= .t2 1

90. y
= x2_ 1
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— 291. y
= x —1

x2
=

x1 — x + I
95.y=

— it2 + 3x — I
97.y= x — 2

x
2

101.
= : 8

(Agnesi’s witch)

— 4
92. y

= — 2

94. y =
— +

x2 — x + I
96.y=—.

_1

x3+x—2
98.y=

x— I100. y
= x(x — 2)

111. Suppose the derivative of the function y = f(x) is

y’(x— l)2x—2).

At what points, if any, does the graph off have a local mint-
mum, local maximum, or point of inflection? (Him: Draw the

sign pattern for y’.)

I

4x102. y
= , +

(Newton s serpentine)

Theory and Examples
103. The accompanying figure shows a portion of the graph of a

twice-differentiable function y = f(x). At each of the five
labeled points, classify y’ und y as positive, negative, or zero.

y

RT

-

104. Sketch a smooth connected curve y = f(x) with

f(—2) = 8, f’(2) = f’(—2) = 0,

f(0) = 4, f’(x) < 0 for lxi < 2,

f(2)=0, f”(x)<O for x<0,

f’(x) > 0 for lxi > 2, f”(x) > 0 for x > 0.

105. Sketch the graph of a twice-differentiable function y f(x)
with the following properties. Label coordinates where possible.

Motion Along a Line The graphs in Exercises 107 and 108 show
the position s = f(s) of an object moving up and down on a coordi.
nate line. (a) When is the object moving away from the origin?
Toward the origin? At approximately what times is the (b) velocity
equal to zero? (c) Acceleration equal to zero? (d) When is the accel.
eration positive? Negative?

107.

5

Time (see)

108.

V

Time (sec

109. Marginal cost The accompanying graph shows the hypothed
ca] cost c = f(x) of manufacturing x items. At approximately
what production level does the marginal cost change from
decreasing to increasing?

20 40 60 80100120
Thousands of units produced

110. The accompanying graph shows the monthly revenue of the Widget j
Corporation for the past 12 years. During appmximaiely wha’
time intervals was the marginal revenue increasing? Decreasing?

x y Derivatives

x<2 y’CO, y”>0
2 1 y’O, y”>O

2<x<4 y’>O, y”>O
4 4 y’>O, y”0

4 < -t < 6 y’ > 0, y” < 0
6 7 y’=0 3l”<O

x>ó y’<O, y”<O

106. Sketch the graph of a twice-differentiable function y = f(x) that
passes through the points (—2,2), (—1, I), (0,0), (1, I), and
(2, 2) and whose first two derivatives have the following sign
patterns.

+ — +

0

—2 0 2
+

—l 1
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= xx — 2)3(x + 3).

For what s-values does the graph of f have an inflection point?
121. Find the values of constants a, b, and c so that the graph of

y = ax3 + bx3 + a has a local maximum at x 3, local mini
mum at x = —1, and inflection point at (I, II).

122. Find the values of constants a, b, and c so that the graph of
ç2 + a)/(bx + c) has a local minimum at x 3 and a

local maximum at (—1, —2).

COMPUTER EXPLORATIONS
in Exercises 123—126, find the inflection points (if any) on the graph of
the function and the coordinates of the points on the graph where the
function has a local maximum or local minimum value. Thea graph the
function in a region large enough to show all these points simultane
ously. Add to your picture the graphs of the function’s first and second
derivatives. How are the values at which these graphs intersect the
x-axis related to the graph of the function? In what other ways are the
graphs of the derivatives related to the graph of the function?
123.yx5—5x4—240 124. y=53— lit2

12& y = + l6x3 — 25

126. y =
—

— 4.t2 ÷ 12x ÷ 20

127 Graph fix) = 2x3 — 4x2 + 1 and its first two derivatives
together. Comment on the behavior of f in relation to the signs
and values off’ and I”.

128. Graph f(x) = x cos x and its second derivative together for
0 x 2n. Comment on the behavior of the graph of f in
relation to the signs and values of f’.

and L’Hâpital’s Rule

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac
tions whose numerators and denominators both approach zero or +. The nile is known
today as l’Hôpital’s Rule, after Guillaume de l’Hôpital. He was a French nobleman who
wrote the first introductory differential calculus text, where the rule first appeared in
print. Limits involving transcendental functions often require some use of the rule for
their calculation,

x — sinx
3S

behaves near x = 0 (where it js undefined), we can examine the limit of F(s) as x —, 0.
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit
of the denominator is 0. Moreover, in this case, both the numerator and denominator
approach 0, and 0/0 is undefined. Such limits may or may not exist in general, but the
limit does exist for the function F(x) under discussion by applying l’HOpital’s Rule, as we
will see in Example Id.

p
4.5 Indeterminate Forms and L’HOpital’s Rule

120. Suppose that the second derivative of the function y = f(s) issUos the derivative of the function 3’ = f(x) is

= (x — l)kx — 2)(x — 4).

At what points, if any, does the graph off have a local mini
mum. local maximum, or point of inflection?

For > 0, sketch a curve y = fix) that has f(l) = 0 and
‘••, f’(x) = l/x. Can anything be said about the concavity of such a

curve? Give reasons for your answer.

j14. can anything be said about the graph of a function y = f(x) that
has a continuous second derivative that is never zero7 Give rea
sons for your answer,

05. If h. c, and dare constants, for what value of b will the curve
y .t2 ÷ bx2 + cx + d have a point of inflection at x = I?
Give reasons for your answer.

fl6. Parabolas

a. Find the coordinates of the vertex of the parabola
y—t&+bx+c,aøO.

;: b. When is the parabola concave up? Concave down? Give rea
sons for your answers.

117. Quadratic curves What can you say about the inflection

points
of a quadratic curve y = ax2 + bx + c, a 0 0? Give

- reasons for your answer.

-.ç 118. Cubic curves Wlrnt can you say about the inflection points of
a cubic curve y = at3 + br2 + Cx + d, a 0 0? Give reasons
for your answer.

______

119. Suppose that the second derivative of the function y = f(x) is

y”v+ lXx—2).

• For what s-values does the graph of f have an inflection point?

____

4.5 Indeterminate Forms

•fTORICAL BIOGRAPHY
Cuillaume François Antoine de I’HOpital
(1661—1704)

_______

iohann Bernoulli

_______

(l667_€

Indeterminate Form 0/0

If we want to know how the function
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Finding Limits in Two Ways

1. urn - -

— 4

• 5x2—3x3. Jim
,-. 7x + I

• l—cosx5. Jim
x—.0

Applying l’Hopital’s Rule

• x—27. Jim
r2X2 — 4

• t3—4r+159. Jim
i—-—3 — — 12

• 5x-2x11. urn
— 7x3 -r 3

• sin:213. Jim—
F—a

• 8x215. Jim
x—’OCOSX —

20—ir17. Jim
— 0)

1— sin 019. Jim
0,.121 cos20

x2
21. Jim

,—oln(secx)

to — cos r)
23. Jim

r—o t — suit

• I 1N25. Jim x — — lsecx
x—tir/21\ 2j

3S1fl&_

27. jim
O—.O 0

x2’29. lim
—

In(x+ 1)
31. km

x—*oo log2x

ln(x2+2x)
33, jim

x_0* mx

v’7i2s — 5
35. Jim 3

37. Jim (In lv — ln(x + 1))

(mi)2
39. Jim

i0- In (sin x)

sin5x2. Jim—
‘—‘0

x-i
4. Jim

x—i4x3 — x — 3

2x2+3x
6. Jim

r-’x3 + x + I

x2—258. Jim
‘—‘-5 x ÷ 5

3r3+3
10. urn

i—i 4t3 — t + 3
i_an

12. lim1
+ Si

sin Sr
14. Jim—

—o 2:

sinx—x16. Jim
x-0

30+ir
0—.—r)3Sifl(0 + (r/3))

i—I20. urn
i—i mx — sin In

ln(cscx)
22. tim

r’Tr/2(x —

(sin!24. Jim
r—ol — cost

N26. Jim I——xltanx
r(u/2) \2 J

(1/2)° — I
28. Jim

0—0 0

3X_ J
30•luhl7SJ

Jog2x
32. Jim,—c.log3 (x + 3)

ln(e’—l)
34. Jim

x—’o’ Jnx

Vay + a2
— a

3& Jim , a>0
y—.0 3

38. jim (lox — In sinx)
s—0’

(3x+l40. limi
,‘{i’ \ X

cosO—143. Jim
v—ac0

— 0 — 1

45. Jim
—

x_sinx47. Jim
,. xtanx

8—sin0cosO49. km
o—o tanO —0

51. Jim xi/t1)
I—i.

53. Jim (tnxV/’

55. Jim x’’
s—n,

57. Jim (1 + 2r)ih2)

61. Jim
(x+2’

— 1J

63. Jim x2 Jo x

65. Jimxtanfr
,—‘n

V9x+l
67. Jim

secx69. Jim
x—.tr/2f tan x

your answers.

x2—2x
b.lim

s0x — sin x

S’—O +h)
44. Jim

h-0

46. Jim x1eJ’

(ë-I)2
48. Jim

,—.a xsinx

50. mim5t°
In — x + X2

,—.o sinxsinlx

52. Jim I)
I— i.

54. JimjlnxV/’

56. urn x’

58. lim(ë + i)”

60. urn (1
+

/x2 +
62. Jim I + 2

64. tim x(Jnx)2
ri)

66. limsinxinx

68.

cot x70. limj

2’ + 4’
72 Jim

74. -us

i2+sinx2+0
I

lr—2 —2=Jim
— cosx 0— 1

In Exercises 1—6, use J’HOpital’s Rule to evaluate the limit, then
evaluate the limit using a method studied in Chapter 2,

Use l’HOpital’s rule to find the limits in Exercises 7—50.

Indeterminate Powers and Products
Find the limits in Exercises 51—66.

59. Jim r’
s—n,

Theory and Applications
L’Hôpital’s Rule does not help with the limils in Exercises 67—74.
it—you just keep on cycling. Find the limits some other way.

2’—3’
7L Jim

,3 +4

.613
73. Jim —

rx

your answers.
75. Which one is correct, and which one is wrong? Give reasonS fo

x—3 • I I
a. urn , = Jim — = —

r’Jr —3 ,—.ji 6
x—3 0

b. Jim
s—’3r3 6

76. Which one is correct, and which one is wrong? Give reasonS fo?

/ I IN
41. lim

• x2—lr . Zx—2a. km , • = Jim
s—Or — sinx ,—o2r — cosx

42. jim (cscx — cotx + cosx)
s—’O’



Now confirm your estimate by finding the limit with
l’Hôpital’s Rule. As the first steptip1y f(x) by the frac
tion ( + ViZ)/(x + Vx2 + x) and simplify the new
numerator.

urn
x—’I

lirn(l+

4,5 Indeterminate Forms and L’Hôpital’s Rule

a Use l’Hôpital’s Rule to show that

W 1,. Graph

Lrn(1
+{)X=e.

fix) = (u
+

and g(x)
+

263

together for x 0. How does the behavior of f compare with
that of g? Estimate the value of lirnr.,, f(x).

c. Confirm your estimate of lim2._, f(x) by calculating it with
1’Hpita1’s Rule.

85. Show that

/ \k
I •lim i 1 -r —j = e’.

k—’’O\ k,

86. Given that x > 0, find the maximum value, if any, of
a. xlix
b. x/

c. x” (it a positive integer)

d. Show that iimr.x1/t = I for every positive integer it.

87. Use limits to find horizontal asymptotes for each function.

a. y = xtan() 3x + e2b. y =
Zr + eIx

-iis x088. Find f’(O) for f(x)
= {, ‘ =

W 89. The continuous extension of (sin if to [0, irJ
a. Graph f(x) = (sin xf on the interval 0 S x S ir. What

value would you assign to f to make it continuous at x = 0?
b. Verify your conclusion in part (a) by finding limr,o f(x)

with l’Hôpital’s Rule.

c. Returning to the graph, estimate the maximum value off on
[0, lr]. About where is max f taken on?

d. Sharpen your estimate in part (c) by graphing fin the same
window to see where its graph crosses the x-axis. To simplify
your work, you might want to delete the exponential factor
from the expression for f’ and graph just the factor that has a
zero.

W 90. The function (sinx)’ (Continuation of Evercise 89.)
a. Graph f(x) = (sin x)I3hhX on the interval —7 S x 5 7. How

do you account for the gaps in the graph? How wide are the
gaps?

b. Now graph f on the interval 0 S x S lr. The function is not
defined at x = ir/2, but the graph has no break at this point.
What is going on? What value does the graph appear to give
for fatx = ir/2? (Hint: Use l’Hôpital’s Rule to find lim f
as x— (tr/2) and x—’ (ir/2).)

c. Continuing with the graphs in part (b), find max f and mm f
as accurately as you can and estimate the values of x at which
they are taken on.

F..

only one of these calculations is correct. Which one? Why are the77.
0thers wrong? Give reasons for your answers.

,
limXl’ = 0-(—OO) =

.
iimxnx = 0(—) = —

tflmxlnxllm4l

Ins[ a.

78.
6

(l!x)
= lim lim(—x)0r—o (— I /t) rO’

Find all values of c that satisfy the conclusion of Cauchy’s Mean
Value Theorem for the given functions and interval.

t

it

a. f(x) = .r, g(x) = x2, (a, 1’) = (—2. 0)

b. f(s) = x, g(x) = x2, (a, Li) arbitrary

c. fGO = x/3 — 4x, g(x) = x,
(a, Li) = (0, 3)

Continuous extension Find a value of c that makes the function

19x — 3sin3x
xO

f(x) = 5x
Ic, x0

L 80.
f.

continuous at x = 0. Explain why your value of c works.
For what values of a and Li is

W8.

(tan 2x a sin Lix”lim I —
x—’ll\ x3

+-i+-—r—)=0?

— Form
.3

a. Estimate the value of

b.

by graphing f(x) = x — over a suitably large inter
val of x.va[ues.

J 82. Find urn (‘JTJ
—

0/0 Form Estimate the value of

2x2 — (3x + l)V + 2
s—i

by graphing. Then confirm your estimate with [‘Hépital’s Rule.
84. This exercise explores the difference between the limit

and the limit

I”lim + = e.
r’OC


