3¢ The Conversion of Mass to Energy
Here is an example of how the approximation
1
V1 =x?

is used in an applied problem.
Newton's second law,
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is stated with the assumption that mass is constant, but we know this is not strictly
true because the mass of a body increases with velocity. In Einstein's corrected
formula, mass bas the value
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where the “rest mass” mg represents the mass of a body that is not moving and ¢ is
the speed of light, which is about 300,000 km/sec. When v is very small compared
with ¢, v?/c? is close to zero and it is safe to use the approximation
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(Eq. 4 with x = v/c) to write
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Equation (6) expresses the increase in mass that results from the added velocity v.
In Newtonian physics, (1/2)mgv? is the kinetic energy (KE) of the body, and
if we rewrite Eq. (6) in the form

1
(m — mg)c* = imovz.

we see that

2

1 1
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or
(Am)c* ~ A(KE). (7
In other words, the change in kinetic energy A(KE) in going from velocity 0 to

velocity v is approximately equal to (Am)c?.
With ¢ equal to 3 x 10% m/sec, Eq. (7) becomes

A(KE) == 90,000,000,000,000,000 Am joules  miss in hslogeams

and we sec that a small change in mass can create a large change in energy. The
energy released by exploding a 20-kiloton atomic bomb, for instance, is the result
of converting only 1 gram of mass to energy. The products of the explosion weigh
only 1 gram less than the material exploded. A U.S. penny weighs about 3 grams.



