Section 2.5

2.) NOT continuous at $x = 3$ since
\[\lim_{{x \to 3}} f(x) = 1 \neq f(3) = 1.5 \]

4.) NOT continuous at $x = 1$ since
\[\lim_{{x \to 1^+}} f(x) = 0 \text{ and } \lim_{{x \to 1^-}} f(x) = 1.5 \]
so that \(\lim_{{x \to 1}} f(x) \) DOES NOT EXIST

5.) a.) YES \quad f(-1) = 0
 b.) YES \quad \lim_{{x \to -1^+}} f(x) = 0
 c.) YES
 d.) YES

6.) a.) YES \quad f(1) = 1
 b.) YES \quad \lim_{{x \to 1}} f(x) = 2
 c.) NO
 d.) NO

7.) a.) NO
 b.) NO

8.) f continuous on interval $[0, 3]\]
 except $x = 0$, $x = 1$, $x = 2$, and $x = 3$

9.) Let $f(2) = 0$
 10.) Let $f(1) = 2$
16.) \(Y = \frac{x+3}{x^2-3x-10} \); \(Y = x+3 \) and \(Y = x^2-3x-10 \) are continuous for all values of \(x \) since they are polynomials; therefore, since \(Y = \frac{x+3}{x^2-3x-10} \) is the quotient of these functions, it is continuous for all values of \(x \) except where \(x^2-3x-10 = (x-5)(x+2) = 0 \), i.e., except for \(x = 5 \) and \(x = -2 \).

20.) \(Y = \frac{x+2}{\cos x} \); \(Y = x+2 \) is continuous for all values of \(x \) since it is a polynomial; \(Y = \cos x \) is continuous for all values of \(x \) since it is a well-known trig function; therefore, since \(Y = \frac{x+2}{\cos x} \) is the quotient of these functions, it is continuous for all values of \(x \) except where \(\cos x = 0 \), i.e., except for \(x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \ldots \).

26.) \(Y = (3x-1)^{\frac{1}{4}} \); let \(f(x) = x^{\frac{1}{4}} \), which is continuous for \(x \geq 0 \), and let \(g(x) = 3x-1 \), which is continuous for all values of \(x \) since it is a polynomial;
since \(y = (3x - 1)^{1/4} = f(3x - 1) = f(g(x)) \)

is functional composition, it is continuous for all \(x \)-values for which \(3x - 1 \geq 0 \), i.e., for \(x \geq \frac{1}{3} \)

29.) \(g(x) = \begin{cases} \frac{x^2 - x - 6}{x - 3} & \text{if } x \neq 3 \\ 5 & \text{if } x = 3 \end{cases} \)

\(= \begin{cases} \frac{(x-3)(x+2)}{x-3} & \text{if } x \neq 3 \\ \frac{x+2}{5} & \text{if } x = 3 \end{cases} \)

\(y = x + 2 \) (line) is continuous for all \(x \)-values. Check \(x = 3 \):

i.) \(g(3) = 5 \)

ii.) \(\lim_{x \to 3} g(x) = \lim_{x \to 3} (x + 2) = 3 + 2 = 5 \)

iii.) \(\lim_{x \to 3} g(x) = 5 = g(3) \), so \(g \) is continuous at \(x = 3 \); thus \(g \) is continuous for all \(x \)-values

30.) \(f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4} & \text{if } x \neq 2, x \neq -2 \\ 3 & \text{if } x = 2 \\ 4 & \text{if } x = -2 \end{cases} \)
\[
\begin{cases}
\frac{(x-2)(x^2+2x+4)}{(x-2)(x+2)}, & x \neq 2, x \neq -2 \\
3 & x = 2 \\
4 & x = -2
\end{cases}
\]

\[
\begin{cases}
\frac{x^2+2x+4}{x+2}, & x \neq 2, x \neq -2 \\
3 & x = 2 \\
4 & x = -2
\end{cases}
\]

\(y = x^2 + 2x + 4\) (parabola) and
\(y = x + 2\) (line) are continuous
for all \(x\)-values, so
\[
\frac{x^2+2x+4}{x+2}
\]
is continuous for all \(x\)-values except \(x = -2\).

Check \(x = 2\):

i.) \(f(2) = 3\)

ii.)
\[
\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2+2x+4}{x+2} = \frac{12}{4} = 3
\]

iii.) \(\lim_{x \to 2} f(x) = 3 = f(2)\); thus,

\(f\) is continuous at \(x = 2\).

Check \(x = -2\):

i.) \(f(-2) = 4\)

ii.)
\[
\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{x^2+2x+4}{x+2} = \frac{4}{0} = \pm \infty
\]

so \(f\) is **not** continuous at \(x = -2\);

\(f\) is continuous at all \(x\)-values EXCEPT \(x = -2\).
42.) \(g(x) = \frac{x^2 - 16}{x^2 - 3x - 4} \) then

\[
\lim_{x \to 4} g(x) = \lim_{x \to 4} \frac{x^2 - 16}{x^2 - 3x - 4} = \lim_{x \to 4} \frac{(x-4)(x+4)}{(x-4)(x+1)} = \frac{8}{5},
\]

so define \(g(4) = \frac{8}{5} \) and \(g \) will be continuous at \(x = 4 \).

43.) Let \(f(x) = \begin{cases} x^2 - 1, & \text{if } x < 3 \\ 2ax, & \text{if } x \geq 3 \end{cases} \)

\[Y = x^2 - 1 \text{ is continuous for } x < 3 \text{ (polynomial)}; \]

\[Y = 2ax \text{ is continuous for } x > 3 \text{ (line)}; \]

make \(f \) continuous at \(x = 3 \) by forcing limits to be equal:

\[
\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} (x^2 - 1) = 9 - 1 = 8,
\]

\[
\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (2ax) = 6a, \quad \text{so}
\]

\[6a = 8 \implies a = \frac{4}{3}. \]
44. Let \(g(x) = \begin{cases} x, & \text{if } x < -2 \\ 6x^2, & \text{if } x \geq -2 \end{cases} \)

\(y = x \) is continuous for \(x < -2 \) (line),
\(y = 6x^2 \) is continuous for \(x \geq -2 \) (parabola); make \(g \) continuous at \(x = -2 \) by forcing limits to be equal:

\[
\lim_{x \to -2^-} g(x) = \lim_{x \to -2^-} x = -2,
\]

\[
\lim_{x \to -2^+} g(x) = \lim_{x \to -2^+} 6x^2 = 4b,
\]

so \(4b = -2 \rightarrow b = -\frac{1}{2} \)

47. Let \(f(x) = \begin{cases} -2, & \text{if } x \leq -1 \\ ax - b, & \text{if } -1 < x < 1 \\ 3, & \text{if } x \geq 1 \end{cases} \)

We need

\[
\lim_{x \to 1^-} (ax - b) = 3 \quad \text{and} \quad \lim_{x \to -1^+} (ax - b) = -2 \rightarrow
\]

\[
\begin{cases}
a(-1) - b = 3 \\
a(1) - b = -2
\end{cases} \rightarrow \begin{cases}
a = b + 3 \\
a = b - 2
\end{cases} \rightarrow
\]

\[
0 = 2b + 1 \rightarrow b = -\frac{1}{2} \quad \text{and} \quad a = \frac{-1}{2} + 3 = \frac{-1}{2} + \frac{6}{2} \rightarrow a = \frac{5}{2}
\]
48.) Let \(g(x) = \begin{cases}
x + 2b, & \text{if } x \leq 0 \\
x^2 + 3a - b, & \text{if } 0 < x \leq 2 \\
3x - 5, & \text{if } x > 2
\end{cases} \)

We need
\[
\lim_{{x \to 0^+}} (ax + 2b) = \lim_{{x \to 0^+}} (x^2 + 3a - b) \\
\lim_{{x \to 2^-}} (x^2 + 3a - b) = \lim_{{x \to 2^-}} (3x - 5)
\]

\[
\begin{align*}
\Rightarrow & \quad a(0) + 2b = (0)^2 + 3a - b \\
\Rightarrow & \quad (2)^2 + 3a - b = 3(2) - 5 \\
\Rightarrow & \quad 2b = 3a - b \\
\Rightarrow & \quad 4 + 3a - b = 1 \\
\Rightarrow & \quad 3b = 3a \quad \Rightarrow \quad 3a - b + 3 = 0 \\
\Rightarrow & \quad a = b \quad (5\text{vi}) \quad \Rightarrow \quad 3(b) - b + 3 = 0 \\
\Rightarrow & \quad 2b + 3 = 0 \quad \Rightarrow \quad b = -\frac{3}{2} \quad , \quad a = -\frac{3}{2}
\end{align*}
\]

52.) **RECALL:** i. \(\lim_{{n \to \infty}} (1 + \frac{1}{n})^n = e \\
ii. \lim_{{x \to 0}} (1 + x)^{\frac{1}{x}} = e
\)

For \(f(x) = (1 + 2x)^{\frac{1}{x}} \):
\[
g(x) = \ln (1 + 2x) \text{ is cont. for } x > -\frac{1}{2};
\]
\[h(x) = \frac{\ln(1 + 2x)}{x} \text{ is cont. (quotient)} \]
for all \(x > -\frac{1}{2} \) \text{ EXCEPT at } x = 0 \; ;

\[k(x) = e^x \text{ is (well-known) cont. } \]
for all \(x \)-values \; ; \text{ then}

\[f(x) = (1 + 2x)^{\frac{1}{x}} = k(h(x)) \]

\[= e^{h(x)} \]

\[= e^{\frac{1}{x} \ln(1 + 2x)} \]

\[= e^{\frac{\ln(1 + 2x)}{x}} = (1 + 2x)^{\frac{1}{x}} \]

is cont. (composition) for all \(x > -\frac{1}{2} \) \text{ EXCEPT at } x = 0 \; ; \text{ and}

\[\lim_{x \to 0} (1 + 2x)^{\frac{1}{x}} = \lim_{x \to 0} \left[(1 + 2x)^{\frac{1}{2x}} \right]^2 \]

\[= e^2 \; ; \text{ so} \]

\[\boxed{f(0) = e^2} \] \text{ and } \(f \) will \text{ be cont. at } x = 0 \; .

56.) \(F(x) = (x-a)^2 (x-b)^2 + x \) \; ;
\(F \) is cont. (polynomial) for all \(x \)-values \; ; assume \(a < b \) and consider the interval \([a, b] \) \; .
\[F(a) = (c)^2(a-b)^2 + a = a \quad \text{and} \]
\[F(b) = (b-a)^2(c)^2 + b = b \quad \text{and} \]
\[m = \frac{a+b}{2} \quad \text{is between} \]
\[F(a) \quad \text{and} \quad F(b) \quad \text{thus by IMVT} \]
\[\text{there is at least one } x \text{-value} \]
\[c \quad \text{so that} \quad F(c) = m \quad \text{i.e.} \]
\[F(c) = \frac{a+b}{2} \quad \text{and} \quad c \text{ is in } [a,b]. \]

59.) Let \(f(x) = \begin{cases} \frac{\sin(x-2)}{x-2}, & \text{if } x \neq 2 \\ 0, & \text{if } x = 2 \end{cases} \)
\[y = \frac{\sin(x-2)}{x-2} \quad \text{is cont. (quotient)} \]
\[\text{for all } x \text{-values EXCEPT at } x = 2 \; j \]
\[\lim_{x \to 2} \frac{\sin(x-2)}{x-2} = 1, \quad \text{but } f(2) = 0, \]
\[\text{so } f \text{ has a removable discontinuity at } x = 2. \]

62.) Let \(f(x) = x \) and \(g(x) = x - \frac{1}{2} \)
\[\text{then both } f \text{ and } g \text{ are cont. for } 0 \leq x \leq 1, \quad \text{but} \]
\[\frac{f(x)}{g(x)} = \frac{x}{x-\frac{1}{2}} \text{ is cont for } 0 \leq x \leq 1 \]
EXCEPT at \(x = \frac{1}{2} \) (YES)

63. Let \(f(x) = \begin{cases} 1, & \text{if } x < 0 \\ -1, & \text{if } x \geq 0 \end{cases} \) and

\[g(x) = \begin{cases} 2, & \text{if } x < 0 \\ -2, & \text{if } x \geq 0 \end{cases} \]

then \(h(x) = f(x)g(x) \)

\[= \begin{cases} (1)(2), & \text{if } x < 0 \\ (1)(-2), & \text{if } x \geq 0 \end{cases} = \begin{cases} 2, & \text{if } x < 0 \\ -2, & \text{if } x \geq 0 \end{cases} = 2, \]

which is cont. at \(x = 0 \), but neither \(f \) nor \(g \) is cont. at \(x = 0 \).

71. We have \(x^3 - 3x - 1 = 0 \), so let \(f(x) = x^3 - 3x - 1 \) and \(m = 0 \); \(f \) is cont. (polynomial) for all \(x \)-values; \(f(0) = -1 \) and \(f(2) = +1 \) and \(m = 0 \) is between \(f(0) \) and \(f(2) \) so choose interval \([0, 2] \); thus by IMVT there is at least one \(x \)-value \(c \), \(0 \leq c \leq 2 \), so that \(f(c) = m \), i.e., \(c^3 - 3c - 1 = 0 \) and equation is solvable.

74. We have \(x^x = 2 \), so let \(f(x) = x^x \) and \(m = 2 \); \(g(x) = e^x \).
is cont. (well known) for all \(x \) values; \(h(x) = \ln x \) is cont. (well known) for \(x > 0 \);
\(k(x) = x \ln x \) is cont. (product) for \(x > 0 \); hence
\[
f(x) = x^x = g(k(x))
= e^{k(x)}
= e \times \ln x
= e^{\ln x^x} = x^x \text{ is cont. (composition) for } x > 0 \text{; } f(1) = 1^1 = 1
\text{ and } f(2) = 2^2 = 4 \text{ and } m = 2 \text{ is between } f(1) \text{ and } f(2) \text{ so choose interval } [1, 2]. \text{ Thus, by IMVT there is at least one } x \text{-value } c, 1 \leq c \leq 2, \text{ so that } f(c) = m, i.e., c^c = 2, \text{ and the equation is solvable.}

75.) \text{ We have } \sqrt{x} + \sqrt{1+x} = 4, \text{ so let } \ f(x) = \sqrt{x} + \sqrt{1+x} \text{ and } m = 4; \ g(x) = \sqrt{x} \text{ is cont. for } x \geq 0 \text{ (well known); } h(x) = \sqrt{1+x} \text{ is cont. (composition) for } x \geq -1 \text{; so } f \text{ is cont. (sum).}
For \(x > -1 \); \(f(0) = \sqrt{0} + \sqrt{1} = 1 \) and
\(f(16) = \sqrt{16} + \sqrt{17} = 4 + \sqrt{17} \) and \(m = 4 \)
is between \(f(0) \) and \(f(16) \) so we use interval \([0, 16]\); they,
by IVP there is at least one \(x \)-value \(c \), \(0 \leq c \leq 16 \),
so that \(f(c) = m \), i.e.,
\(\sqrt{c} + \sqrt{1+c} = 4 \) and the equation is solvable.
I.) Prove $x^3 = x + 2$ is solvable:

$x^3 = x + 2 \Rightarrow x^3 - x - 2 = 0$, so let $f(x) = x^3 - x - 2$ and $m = 0$; note that $f(1) = -2 < 0$ and $f(2) = 4 > 0$ so $m = 0$ is between $f(1)$ and $f(2)$; use the interval $[1, 2]$; f is a continuous function on $[1, 2]$ since it is a polynomial. By the IVT it follows that there is a number c, $1 \leq c \leq 2$, so that $f(c) = m$, i.e., $c^3 - c - 2 = 0$, and the original equation is solvable.
II.) Prove $2 + \sin x = x$ is solvable:

$2 + \sin x = x \Rightarrow 2 - x + \sin x = 0$ so let $f(x) = 2 - x + \sin x$ and $m = 0$; f is continuous for all values of x since it is the sum of continuous functions ($y = 2 - x$, a line, and $y = \sin x$, a well-known trig function); note that $f(0) = 2 > 0$ and $f(\pi) = 2 - \pi - \sin \pi = 2 - \pi < 0$, so $m = 0$ is between $f(0)$ and $f(\pi)$, use the interval $[0, \pi]$. By the IMVT it follows that there is a number c, $0 \leq c \leq \pi$, so that $f(c) = m$, i.e., $2 - c + \sin c = 0$, and the original equation is solvable.
1.) Use limits and algebra to determine the value of constants \(A \) and \(B \) so that each of the following functions is continuous for all values of \(x \).

a.) \(f(x) = \begin{cases} \frac{x^2 - 7x + 6}{x - 6}, & \text{if } x \neq 6 \\ A, & \text{if } x = 6. \end{cases} \)

b.) \(f(x) = \begin{cases} A^2 x - A, & \text{if } x \geq 1 \\ 2, & \text{if } x < 1. \end{cases} \)

c.) \(f(x) = \begin{cases} \frac{A + x}{A + 1}, & \text{if } x < 0 \\ A x^3 + 3, & \text{if } x \geq 0. \end{cases} \)

d.) \(f(x) = \begin{cases} 3, & \text{if } x \leq 1 \\ A x^2 + B, & \text{if } 1 < x \leq 2 \\ 5, & \text{if } x > 2. \end{cases} \)

e.) \(f(x) = \begin{cases} A x - B, & \text{if } x \leq -1 \\ 2 x + 3 A + B, & \text{if } -1 < x \leq 1 \\ 4, & \text{if } x > 1. \end{cases} \)

2.) For what \(x \)-values are the following functions continuous? Briefly explain why using shortcuts and rules from class. Sketch the graph of each using a graphing calculator.

a.) \(g(x) = \frac{x + 1}{x^2 - 4} \)

b.) \(h(x) = \frac{100}{4 - \sqrt{x^2 - 9}} \)

c.) \(h(x) = \sin^3(\ln(3x - 5)) \)

d.) \(g(x) = \begin{cases} \frac{x^2 - 3x - 4}{x - 4}, & \text{if } x \neq 4 \\ 5, & \text{if } x = 4. \end{cases} \)

e.) \(f(x) = \begin{cases} \frac{x^3 + 1}{x^2 - 1}, & \text{if } x \neq 1, -1 \\ -3/2, & \text{if } x = -1 \\ 3, & \text{if } x = 1. \end{cases} \)
1.) a.) Since \(\lim_{x \to 6} f(x) = \lim_{x \to 6} \frac{x^2 - 7x + 6}{x - 6} \)

 \[\lim_{x \to 6} \frac{(x-6)(x-1)}{(x-6)} = 5 \]

 Thus, choosing \(a = 5 \)

 makes \(f \) continuous at \(x = 6 \) (it's already continuous for \(x \neq 6 \).)

b.) \(f \) is continuous for \(x < 1 \) and for \(x > 1 \).

 We must make \(f \) continuous at \(x = 1 \):

 \[\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (a^2x - a) = a^2 - a \quad \text{and} \]

 \[\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (2) = 2 \]

 Thus, \(a^2 - a = 2 \)

 \[a^2 - a - 2 = 0 \rightarrow (a - 2)(a + 1) = 0 \rightarrow a = 2 \quad \text{or} \quad a = -1 \]

c.) \(f \) is continuous for \(x < 0 \) (so long as \(a \neq -1 \))

 and for \(x > 0 \). We must make \(f \)

 continuous at \(x = 0 \):

 \[\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (ax^3 + 3) = 3 \quad \text{and} \]

 \[\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{a + x}{a + 1} = \frac{a}{a + 1} \quad \text{thus} \frac{a}{a + 1} = 3 \rightarrow \]

 \[a = 3a + 3 \rightarrow -3 = 2a \rightarrow a = \frac{-3}{2} \]
d.) \(f \) is continuous for \(x < 1 \), for \(1 < x < 2 \), and for \(x > 2 \). We must make \(f \) continuous at \(x = 1 \) and at \(x = 2 \):

at \(x = 1 \): \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} (ax^2 + b) = a + b \) and
\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} (3) = 3, \quad \text{and} \quad a + b = 3.
\]

at \(x = 2 \): \(\lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} (ax^2 + b) = 4a + b \) so
\[
\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} (ax^2 + b) = 5, \quad \text{and} \quad 4a + b = 5.
\]

Thus \(a + b = 3 \) \(\Rightarrow \) \(b = 3 - a \)
\[
4a + b = 5 \quad \Rightarrow \quad 4a + (3 - a) = 5 \quad \Rightarrow \quad 3a = 2 \quad \Rightarrow \quad a = \frac{2}{3} \quad \text{and} \quad b = \frac{7}{3}.
\]

e.) \(f \) is continuous for \(x < -1 \), for \(-1 < x < 1 \), and for \(x > 1 \). We must make \(f \) continuous at \(x = -1 \) and \(x = 1 \):

at \(x = -1 \): \(\lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} (2x + 3a + b) = 3a + b - 2 \) and
\[
\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} (a - b) = -a - b \), so \(3a + b - 2 = -a - b \)
\]

at \(x = 1 \): \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} (4) = 4 \) and
\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} (2x + 3a + b) = 2 + 3a + b, \quad \text{so} \quad 2 + 3a + b = 4.
\]
Thus, \[3a + b - 2 = -a - b \quad \text{and} \quad 4a + 2b = 2\]
\[\rightarrow 2 + 3a + b = 4 \quad \text{and} \quad 3a + b = 2 \quad \therefore b = 2 - 3a\]
\[\rightarrow 4a + 2(2 - 3a) = 2 \quad \rightarrow 4a + 4 - 6a = 2 \quad \rightarrow 2 = 2a \quad \therefore a = 1 \quad \text{and} \quad b = -1\]

2.) a.) \(Y = x + 1\) and \(Y = x^2 - 4\) are continuous for all values of \(x\) (since they are polynomials), so \(g(x) = \frac{x + 1}{x^2 - 4}\) is continuous for all values of \(x\) (quotient of continuous functions) except where \(x^2 - 4 = (x - 2)(x + 2) = 0\), i.e., except for \(x = 2\) and \(x = -2\).

b.) \(Y = x^2 - 9\) and \(Y = 100\) are continuous for all values of \(x\) (since they are polynomials); \(Y = \sqrt{x}\) is a well
Known continuous function for \(x \geq 0 \); let \(f(x) = \sqrt{x} \) and \(g(x) = x^2 - 9 \), then \(\sqrt{x^2 - 9} = f(g(x)) \) is continuous (composition of continuous functions) so long as \(x^2 - 9 \geq 0 \), i.e., \((x-3)(x+3) \geq 0 \), i.e., for \(x \geq 3 \) and \(x \leq -3 \);

\[
Y = Y \text{ is continuous for all values of } x, \text{ so that } Y = 4 - \sqrt{x^2 - 9} \text{ is continuous (difference of continuous functions)} \text{ for } x \geq 3 \text{ and } x \leq -3 \; \text{; finally},
\]

\[
h(x) = \frac{100}{4 - \sqrt{x^2 - 9}} \text{ is continuous (quotient of continuous functions)} \text{ for } x \geq 3 \text{ and } x \leq -3 \text{ so long as } 4 - \sqrt{x^2 - 9} \neq 0 \; \text{;}
\]

\[
4 - \sqrt{x^2 - 9} = 0 \Rightarrow 4 = \sqrt{x^2 - 9} \Rightarrow 16 = x^2 - 9 \Rightarrow x^2 = 25 \Rightarrow x = \pm 5 \; \text{; thus},
\]

\[
h(x) = \frac{100}{4 - \sqrt{x^2 - 9}} \text{ is continuous for } x \geq 3 \text{ and } x \leq -3 \text{ except } x = \pm 5.
\]
c.) \(y = 3x - 5 \) and \(y = x^3 \) are continuous for all values of \(x \) (since they are polynomials), and \(y = \sin x \) is a well-known function continuous for all values of \(x \); \(y = \ln x \) is a well-known function continuous for \(x > 0 \).

\[y = \ln x \]

Let \(f(x) = \ln x \) and \(g(x) = 3x - 5 \), then \(\ln (3x - 5) = f(g(x)) \) is continuous (composition of continuous functions) so long as \(3x - 5 > 0 \), i.e., for \(x > \frac{5}{3} \).

Let \(k(x) = x^3 \) and \(l(x) = \sin x \), then \(h(x) = \sin^3 (\ln (3x - 5)) = k(l(f(g(x)))) \) is continuous (composition of continuous functions) for \(x > \frac{5}{3} \).

For graph of function try the following ranges:

1. \(\frac{5}{3} < x \leq 1000 \)
2. \(\frac{5}{3} < x \leq 100 \)
3. \(\frac{5}{3} < x \leq 10 \)
4. \(\frac{5}{3} < x \leq 2 \)
5. \(\frac{5}{3} < x \leq 1.75 \)
6. \(\frac{5}{3} < x \leq 1.68 \)
7. \(\frac{5}{3} < x \leq 1.668 \)
8. \(\frac{5}{3} < x \leq 1.666 \)
d.) \(g(x) = \begin{cases} \frac{x^2 - 3x - 4}{x - 4}, & \text{if } x \neq 4 \\ 5, & \text{if } x = 4 \end{cases} \)

\[= \begin{cases} \frac{(x - 4)(x + 1)}{x - 4}, & \text{if } x \neq 4 \\ 5, & \text{if } x = 4 \end{cases}, \]

\[= \begin{cases} x + 1, & \text{if } x \neq 4 \\ 5, & \text{if } x = 4 \end{cases} \]

i.) \(g(4) = 5 \)

ii.) \(\lim_{x \to 4} g(x) = \lim_{x \to 4} (x + 1) = 4 + 1 = 5 \)

iii.) \(\lim_{x \to 4} g(x) = g(4) \)

Thus, \(g \) is continuous at \(x = 4 \); since \(y = x + 1 \) is continuous for \(x \neq 4 \) (since it is a polynomial), \(g \) is continuous for all values of \(x \).

\[
\begin{array}{c}
y = x + 1 \\
\end{array}
\]

\[
\begin{array}{c}
x \end{array}
\]

\[
\end{array}
\]

\[
\begin{array}{c}
y = \frac{x^3 + 1}{x^2 - 1}, & \text{if } x \neq 1, -1 \\
-\frac{3}{2}, & \text{if } x = -1 \\
3, & \text{if } x = 1
\end{cases}
\]
\[y = x^3 + 1 \] and \[y = x^2 - 1 \] are continuous for all values of \(x \) (since they are polynomials), so \[y = \frac{x^3 + 1}{x^2 - 1} \] is continuous for all values of \(x \) except where \(x^2 - 1 = 0 \), i.e., except for \(x = \pm 1 \).

Check \(x = 1 \): i.) \(f(1) = 3 \), ii.) \[\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^3 + 1}{x^2 - 1} = \frac{2}{0^+} = \pm \infty \] so \[\lim_{x \to 1} f(x) \] does NOT exist and \(f \) is NOT cont. at \(x = 1 \).

Check \(x = -1 \): i.) \(f(-1) = \frac{-3}{2} \), ii.) \[\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^3 + 1}{x^2 - 1} = \lim_{x \to -1} \frac{(x+1)(x^2 - x + 1)}{(x+1)(x-1)} = \frac{3}{-2} = -\frac{3}{2} \] and iii.) \(f(-1) = \lim_{x \to -1} f(x) \) so that \(f \) is continuous at \(x = -1 \); thus, \(f \) is continuous for all \(x \)-values except \(x = 1 \).
\[\lim_{x \to 1^+} f(x) = \frac{2}{0^+} = +\infty, \]
\[\lim_{x \to 1^-} f(x) = \frac{2}{0^-} = -\infty, \]
\[\lim_{x \to +\infty} f(x) = +\infty, \]
\[\lim_{x \to -\infty} f(x) = -\infty. \]