Math 21B (Kouba) Parametric Equations Speed, Arc Length

Assume that an object moves along a graph in the xy-plane in such a way that its LOCATION (x, y) at time t is given parametrically by

$$\begin{cases} x = f(t) \\ y = g(t) \end{cases}$$

The object's SPEED at time t is given by

$$\frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \quad \bullet$$

The distance ($ARC\ LENGTH$) the object travels from time $t=t_1$ to time $t=t_2$ is given by

$$ARC = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

Here are two alternate formulas for ARC LENGTH:

I.) If a graph is given in rectangular form by y = f(x) from x = a to x = b then

ARC =
$$\int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$
.

II.) If a graph is given in *polar* form by $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ then

ARC =
$$\int_{\alpha}^{\beta} \sqrt{(f(\theta))^2 + (f'(\theta))^2} d\theta$$