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PExercises 1-24, find an antiderivative for each function. Do as 25. f (x + 1) dx 26. / (5 = 6x) dx
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> ;
.- b. & c. ' —2x+1 2. f(3r2+%)dr z&/(‘5+4r3)m
' b. x7 e x? —6x+8
~4
& b. x™* e x4+ 2+3 29.[{2}(3-5x+7}dx 30.[(1—x2—315}dx
| x3
b. = + 2? e —x+x—1 ,
Slored | 2 i 1 (1 2 )
- 3 s 3.1./(}:2 -3 )dx 2 [(3-5+%)a
pter 5, T xR x?
' 2 : 1 1 33. fx"” dx 34, /x'ﬂ"‘dx
e " 20 LF TR "
3/ 1 X 3s. /(\/E+%)dx 36. /(—"+l)dx
f b —= ¢ Vit 2
N 2V Vi _ Va
- 3 1 s S 15 I
% - "W . V% . [ (o= 5)a s [(3 ff4)"”
S5 2 5 1 ap -y
el A b. 3x § - 39, /21(1 - x ) drx 40. /1'3(x + 1) dx
| QY 1 ap 3 -sn
o b ~zx G—=x
2 2 7} 41. /r—v;-:—\/;dr 42. /Mldt
7 5 ’ !
b. X ¢l = ¥
: i i 43, /(—2 cos f) dt . 44. /(—5 sin 1) dt
/-term b. 5 c. 1+ 5 — ; 5
—r sin wx b. 3sinx ¢. sin7x — 3sin3x 4s. _[7 o 3 df 46. /3 cos 56 b
e LA X 2
-’."' T COS X b. E cos 5 c. cos + mcosx 47. /(_3 c863 %) dx 48. /(_ Se; x)dx
2 X 3x
sec? x b. Ssec? = c. —sec? =
3 2
4 331 49. f@%ﬁ(m 50. /%sec&tan&d&
i cscl x b. —Ecsc2 = c. 1 —8csc?x
4iR. csc x cot x b. —csc S5x cot 5x c. —T csc"%cot%{ SL /("3‘ + 5e7) dx 52. _/"[2"'I — 3¢ dx
mX X
: 8€C x tan x b. 4 sec 3x tan 3x C. sm7m~2— 53, f{e“'+4‘)dﬁ.’ 54, /(1.3).:‘&
9 ‘2, o> b. e . &2
456 N.'a, o b, ¢4/ c e’ 55, /(4 sec x tan x — 2 sec? x) dx
i3 b, 2 c. G) |
: 56. i(csczx — csc x cot x) dx
8 x\/i b. x™ . x\/f-l
1d that 2 b 1 & 1 57. f(sin 2x — esc? x) dx 58. /{2 cos 2x — 3 sin 3x) dx
: Vi- 22 T2+ 1) "1+ 42
N 1 + cosds 1 — cos 61
ﬁ-x-(%) b 2+ 2* &t =) 59‘/ g W “"/ 3 %
A - 61 L. 3 N . [ (2= -2L)a
#uing Indefinite Integrals 2 X241 - Vi-y A Y
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65. /(1 + tan” 0) d 66. /(2 + tan’ #) d@

(Hint: 1 + tan? @ = sec® )

67. f cot? x dx

(Hint: 1 + cot? x = csc? x)

68. f(l — cot? x) dx

csc 6
cscf — sinf

69. / cos f(tan @ + sec @) df 70. f

Checking Antiderivative Formulas
Verify the formulas in Exercises 71-82 by differentiation.

1 j_zsdx_-gx_—z_)i.i.c
71. (x ) v 28

(3x + 5)!

72, /(3x+5}—’dx=——-3—+c

73. fsecz (5x — 1) dx = %tan(Sx— n+cC

/csc"(’r - l)dx =-3 co((x; l) +C
75 N —— S
") e+ 12 x+1 _

X
76. /(x+1)2 = +C

1
71'/x+l

78./xe’dx=xe‘—e‘+c

n [ 5= %tan"(é) £

74,

£

dc=lnlx+1|+C x#-1

a* + x*
dx .“(x)
80. ———=3in!' |+ C
= o G
-1 =1
g1, [ 8 2 =lnx—%ln(1+.r2)—m 2900

82. /(sin"x)zdx = x(sin"!x)? — 2x + 2V1 — x¥sin'x + C

83. Right, or wrong? Say which for each formula and give a brief
reason for each answer,

2
a. /xsinxd.t =‘52—s'mx +C

b. fxsinxdx =—-xcosx + C

[ /xs’mxdx =—xcosx +sinx + C

84, Right, or wrong? Say which for each formula and give a brig
reason for each answer. '

3
a, [mnescczedﬂ=%@+ c

b. /tan@sw29d9 = %mnze +C

c. /mﬂsec28d6 = %secze +C

85. Right, or wrong? Say which for each formula and give a brig
reason for each answer.

+ Kl
a.‘/(lr+1)2d.r={—2x—a,i+c

b. f3(2x+l}2dx=(2x+l]3+c

c./6(2x+l)1dx=(?.x+l)3+c

86. Right, or wrong? Say which for each formula and give a brig
reason for each answer.

a./v2x+ldx=Vx2+x+C
b.f\/2x+1dx=\/x2+x+c

¢ [V2t+1dx=%(Vh+l]3+C

87. Right, or wrong? Give a brief reason why.

—15(x + 3)? _(x+3)’
[FEa- () +c

88. Right, or wrong? Give a brief reason why.

S Bl )
/xcos(xz) sin(x?) e smj{rxz)

1
x2

2 i

Initial Value Problems

89. Which of the following graphs shows the solution of the ini
value problem

dy
A =19
& 2x, y =4 whenx = 17
y Yy
3 A
4 9(L,4 - p(1,4)
i 3
2F 2r
1+ 1f
1 L x 1 1 x
=1 0 1 -1 0 1
(a) (b)

Give reasons for your answer,



=-x, y=1whenx=-17

0.4 y

(-1, D (=11

X / Ol \*x 0 > X

(b) (c)

Give reasons for your answer.
jolve the initial value problems in Exercises 91-112.

I =2t -7, ¥2)=0
B =10 - x y0) =1

: =xl—2+x, x>0 y2)=1:
'=9x2—4x+5, y=1)=0

v
“rin
+

"; =323, y-1)=-5

&

E, 4 1
Bis-=—7—, Y49 =0
3 .' ol y(4)
.I ~,.'d.!
. 5 = 1+ cost, s(0)=4
% =cost + sint, s(m) =1
2 % =~—msinmf, r0) =0
%=mswﬂ. r0) =1
%= %secttant. v(0) =1
initial | !
\ g+ oscty, v(g-) wei]
B t>1L,v2)=0
¢ Ve -1 ‘
' 8
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g ¥
s s

. %
£

v
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; ..__ﬁ=0‘ o B
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>
o8 45 _ 3 ds| _ B
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.'dgy
s

=6 (0 =-8 y©O=0 y0)=5
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a6 1
L2 0, 070)=-2, 00)=—5 60 =V2
110. <5 = 0; 6'0) 6'(0) =—3. 60 V2
111. y® = —sint + cos 1;

y"(0) =17, y'© =y©0=-1 »0)=0

112. y* = —cos x + B sin 2x;
y'(0) =0, y0)=y0=1 y0=3

113. Find the curve y = f(x) in the xy-plane that passes through the
point (9, 4) and whose slope at each point is 3Vx.

114. a. Find a curve y = f(x) with the following properties:
SR
Y ax
ii) Its graph passes through the point (0, 1) and has a hori-
zontal tangent there.
b. How many curves like this are there? How do you know?
Solution (Integral) Curves

Exercises 115-118 show solution curves of differential equations. In
each exercise, find an equation for the curve through the labeled point.

115. 116.

Applications
119. Finding displacement from an antiderivative of velocity

a. Suppose that the velocity of a body moving along the s-axis is

B y=98-3.
i) Find the body’s displacement over the time interval from
= ltor= 3giventhats = 5 whent = 0.
i) Find the body’s displacement from t = 1 to + = 3 given
that s = —2 when 1 = 0.
iii) Now find the body’s displacement fromt = 1tot =3
given that s = s; when 1 = 0.
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b. Suppose that the position s of a body moving along a coordi-
nate line is a differentiable function of time 7. Is it true that
once you know an antiderivative of the velocity function
ds/dt you can find the body's displacement from ¢ = a to
¢ = b even if you do not know the body’s exact position at
either of those times? Give reasons for your answer.

120. Liftoff from Earth A rocket lifts off the surface of Earth with
a constant acceleration of 20 m/ sec2. How fast will the rocket
be going | min later?

121. Stopping a car in time You are driving along a highway at a
steady 60 mph (88 ft/sec) when you see an accident ahead
and slam on the brakes. What constant deceleration is required
{o stop your car in 242 ft? To find out, carry out the following

steps.
1. Solve the initial value problem
. : i d’s
Differential equation: 7 -k (k constant)
Initial conditions: 3—? = 88ands = O when? = 0.

Measuring time and distance from
when the brakes are applied
2. Find the value of  that makes ds/dt = 0. (The answer will
involve k.)

3. Find the value of k that makes s = 242 for the value of t you
found in Step 2.

122. Stopping a motorcycle The State of Illinois Cycle Rider
Safety Program requires motorcycle riders to be able to brake
from 30 mph (44 ft/sec) to 0 in 45 ft. What constant decelera-
tion does it take to do that?

123. Motion along a coordinate line A particle moves on a coordi-
nate line with acceleration a = d’s/di* = 15Vt - (3/V1),
subject to the conditions that ds/dt = 4ands = O whenr = L.
Find
a. the velocity v = ds/dt in terms of ¢

b. the position s in terms of 1.

124. The hammer and the feather When Apollo 15 astronaut
David Scott dropped a hammer and a feather on the moon to
demonstrate that in a vacuum all bodies fall with the same (con-
stant) acceleration, he dropped them from about 4 ft above the
ground. The television footage of the event shows the hammer
and the feather falling more slowly than on Earth, where, in a
vacuum, they would have taken only half a second to fall the 4
ft. How long did it take the hammer and feather to fall 4 ft on the
moon? To find out, solve the following initial value problem for
s as a function of r. Then find the value of ¢ that makes s equal to 0.

2
ds _ _52 ft/sec?

Differential equation: i

= =Q0ands = 4whent =0

gis . ds
Initial conditions: p>

125. Motion with constant acceleration The standard equation for
the position s of a body moving Wwith a constant acceleration a

along a coordinate line is

s = 5 + vt + 5o, 1)

where v, and s are the body’s velocity and position at time

{ = 0. Derive this equation by solving the initial value problem -
4 ; . d’s _

Differential equation: ol a

ds voand s = sowhenr = 0.

Initial conditions:
dr

126. Free fall near the surface of a planet For free fall near the
surface of a planet where the acceleration due to gravity has a

constant magnitude of g length-units/sec?, Equation (1) in Exer- 2 3

cise 125 takes the form : ]
5= *%grz + yyt + 5o, ) 4

where s is the body's height above the surface. The equation hag 5.

a minus sign because the acceleration acts downward, in the:

direction of decreasing s. The velocity v is positive if the object -

is rising at time ¢ = 0 and negative if the object is falling.

Instead of using the result of Exercise 125, you can derives %

Equation (2) directly by solving an appropriate initial value§

problem. What initial value problem? Solve it to be sure you s

have the right one, explaining the solution steps as you go along, ‘

127. Suppose that

o) = %(1 ~ Vi) and g = f;(x +2).

Find:
a. f_f(x)dx b. fg(x)dx
c [[-f(x)]dx d. f[—g(x)] dx

[ /[f(xl + g(x)] dx f. [[f(x) —g(x)] dx

128, Uniqueness of solutions If differentiable functions y =
and y = g(x) both solve the initial value problem

dy _ -
i fx),  yx) = Yo

on an interval 7, must F(x) = G(x) for every xin I? Give reas ns
for your answer.

COMPUTER EXPLORATIONS
Use a CAS to solve the initial value problems in Exercises 1
Plot the solution curves.

29-1%%

129. y' = cos’x + sinx, y(m) =1

1
THx ) =-1

1
V4 -
132. y' = % +Vx, ) =0, y()=0

130. y'

1BLy = y0) =2
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€ interval i oh of the function using

‘ a lower sum with two rectangles of equal width.

'b. alower sum with four rectangles of equal width.

c. an upper sum with two rectangles of equal width.

d. an upper sum with four rectangles of equal width.

[ f(x) = x? between x = ODand x = 1.

. x) = x* between x = Oand x = 1.

=-.‘i' = 1/x between x = 1 and x = 5.

‘-If(x} =4 — x’between x = —2and x = 2.

.\ Using rectangles each of whose height is given by the value of
$ function at the midpoint of the rectangle's base (the midpoint
le), estimate the area under the graphs of the following functions,
ging first two and then four rectangles.

b f(x) = x* between x = 0 and x = 1.

ee that its |
calculate
+ interval,

vith finite
s of equal
above the
ie of sinx
at the left
this poinf -
areas then

_1[) T y, = x3 between x = 0 and x = 1.

3) 8 )=l/xbctweenx=landx=5.

2.364. “:‘T(I) =4 — x2between x = —2and x = 2.
:-lr nce

ea by the. [

s . Distance traveled The accompanying table shows the velocity
—— " of a model train engine moving along a track for 10 sec. Estimate
T ; - g ! the distance traveled by the engine using 10 subintervals of length
with Cad 1 with
': \;;lz::e ﬂ:i "8, left-endpoint values.

' 'b. right-endpoint values.

graph of
 midpoint Time Velocity Time Velocity
to the true’ (SEC) (i“-/sec) (Sec) (il.'l. ISEC}

L 0 0 6 11

1 12 7 6

2 22 8 2

3 10 9 6

B 5 10 0
‘ing objed 5 13
n over &
st we sub- ance traveled upstream You are sitting on the bank of a
\stant ovel #Hidal river watching the incoming tide carry a bottle upstream. You
1e value ol jfecord the velocity of the flow every 5 minutes for an hour, with the
] is subdi‘. fesults shown in the accompanying table. About how far upstream
alue off# fid the bottle travel during that hour? Find an estimate using
orm » 12 subintervals of length 5 with

left-endpoint values.
. Tight-endpoint values.

4,

307

5.1 Areaand Estimating with Finite Sums

The choices for the c; could maximize or minimize the value of f in the kth subinterval, or
give some value in between. The true value lies somewhere between the approximations
given by upper sums and lower sums. The finite sum approximations we looked at
improved as we took more subintervals of thinner width.

& e T W

Time Velocity Time Velocity
(min) (m / sec) (min) (m /sec)
0 1 35 1.2
5 1.2 40 1.0
10 1.7 45 1.8
15 2.0 50 1.5
20 1.8 55 1.2
25 1.6 60 0

30 14

11. Length of a road You and a companion are about to drive a
twisty stretch of dirt road in a car whose speedometer works but
whose odometer (mileage counter) is broken. To find out how
long this particular stretch of road is, you record the car’s velocity
at 10-sec intervals, with the results shown in the accompanying
table. Estimate the length of the road using

a. left-endpoint values.
b. right-endpoint values.

Velocity Velocity
Time (converted to ft/sec) | Time (converted to ft / sec)
(sec) (30mi/h = 44ft/sec)| (sec) (0mi/h = 44ft/sec)
0 0 70 15
10 44 80 22
20 15 90 35
30 35 100 44
40 30 110 30
50 44 120 35
60 35

12. Distance from velocity data The accompanying table gives
data for the velocity of a vintage sports car accelerating from 0 to
142 mi /h in 36 sec (10 thousandths of an hour).

Time Velocity Time Velocity

(h) (mi/h) (h) (mi [h)
0.0 0 0.006 116
0.001 40 0.007 125
0.002 62 0.008 132
0.003 82 0.009 137
0.004 96 0.010 142
0.005 108
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mi/hr

2
N

| > hours
0 0.002 0.004 0.006 0.008 0.01

a, Use rectangles to estimate how far the car traveled during the
36 sec it took to reach 142 mi/h.

b. Roughly how many seconds did it take the car to reach the
halfway point? About how fast was the car going then?

13. Free fall with air resistance An object is dropped straight down
from a helicopter. The object falls faster and faster but its accelera-
tion (rate of change of its velocity) decreases over time because of
air resistance. The acceleration is measured in ft/sec’ and
recorded every second after the drop for 5 sec, as shown:

t| o 1 2 3 4 5
a | 3200 1941 1177 714 433 263

a. Find an upper estimate for the speed when 7 = 5.
b. Find a lower estimate for the speed when r = 5.
¢. Find an upper estimate for the distance fallen when ¢ = 3.

14. Distance traveled by a projectile An object is shot straight
upward from sea level with an initial velocity of 400 ft/sec.

a. Assuming that gravity is the only force acting on the object,
give an upper estimate for its velocity after 5 sec have elapsed.
Use g = 32 ft/sec? for the gravitational acceleration.

b. Find a lower estimate for the height attained after 5 sec.

Average Value of a Function

In Exercises 15—18, use a finite sum to estimate the average value of f
on the given interval by partitioning the interval into four subintervals
of equal length and evaluating f at the subinterval midpoints.

15 f)=2 on [0,2]

16. fx)=1/x on [1,9]

17. f() = (1/2) + sin®mt on [0,2]

1 =9
2+
3 Hsin“mt

!_‘_

l.‘
i
mt)' ' 2, I
18. f(ry=1—|cos~) on [0,4] =
’
2. (C
1§' a.
- 4! b.
Examples of Estimations 3 g
19. Water pollution Oil is leaking out of a tanker damaged at sea, Thellill
damage to the tanker is worsening as evidenced by the inci .;.' :{ &
leakage each hour, recorded in the following table. E
- F T
Time (h) 0 1 2 3 40 :
Leakage gal/h)| 50 | 70 | 97 | 136 | 150
. p |
Time (h) 5 6 7 8 __.5"
Leakage (gal /h) | 265 | 369 | 516 | 720 .
'\
a. Give an upper and a lower estimate of the total quantity of o o
that has escaped after 5 hours. .
b. Repeat part (a) for the quantity of oil that has escaped aft &y
8 hours. - ‘ g
¢. The tanker continues to leak 720 gal /h after the first 8 houg '
If the tanker originally contained 25,000 gal of oil, approx -" ¥
mately how many more hours will elapse in the worst ca§ ;
before all the oil has spilled? In the best case? L
20. Air pollution A power plant generates electricity by burning oil

Pollutants produced as a result of the burning process are
by scrubbers in the smokestacks. Over time, the scrubben
become less efficient and eventually they must be replaced whe
the amount of pollution released exceeds government standard
Measurements are taken at the end of each month determining th
rate at which pollutants are released into the atmosphere, recol e
as follows.

e i -'.""5_#, i g T

e

May Jun _

Month Jan Feb Mar Apr

Pollutant :
releaserate 020 025 027 034 045 052
(tons / day) 4
Month Jul Aug Sep Oct Nov
Pollutant

release rate 063 070 081 085 0.89

(tons / day)

a. Assuming a 30-day month and that new scrubbers allow 08
0.05 ton/day to be released, give an upper estimate OL}
total tonnage of pollutants released by the end of June. Whal
a lower estimate? :

b. In the best case, approximately when will a total of 125 on
of pollutants have been released into the atmosphere? :
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| {. cribe a regular n-sided polygon inside a circle of radius 1 and COMPUTER EXPLORATIONS
‘compute the area of the polygon for the following values of ni: In Exercises 23-26, use a CAS to perform the following steps.

i 4 (square) b. 8 (octagon) c 16 a. Plot the functilons over the given interval,
3 _‘. Compare the areas in parts (a), (b), and (c) with the area of the b. Subdivide the interval into n = 100, 200, and 1000 subinter-
. circle. vals of equal length and evaluate the function at the midpoint
& ontinuation of Exercise 21.) of each subinterval.

.‘-'.‘

3 g Inscribe a regular n-sided polygon inside a circle of radius 1 and ¢. Compute the average value of the function values generated in
" compute the area of one of the n congruent triangles formed by part (b).
- ~ drawing radii to the vertices of the polygon. d. Solve the equation f(x) = (average value) for x using the aver-
£ 2. Compute the limit of the area of the inscribed polygon as NP TR S M e Thcihie = TR0 pediaing
(% . n—00, 23. f(x) =sinx on [0,m] 24. f(x) =sin’x on [0, 7]
. The R S i
: . Repeat the computations in parts (a) and (b) for a circle of
ased ’{ m&p:: r. d ; 25. f(x)==x sin% on [% w} 26. f(x) =x sinzé on {L—r, 17}

r 48 L

D). Z Sigma Notation and Limits of Finite Sums

Ry

. In estimating with finite sums in Section 5.1, we encountered sums with many terms (up to
1000 in Table 5.1, for instance). In this section we introduce a more convenient notation

for sums with a large number of terms. After describing the notation and stating several of

o its properties, we look at what happens to a finite sum approximation as the number of
after ¢ terms approaches infinity.
Ours. e . %
il Finite Sums and Sigma Notation
m‘_; Sigma notation enables us to write a sum with many terms in the compact form

' n

iﬁl- ;ak=al+az+a3+---+an_]+a,,.
- A ot
Dbﬂ‘ | 7 - . . . -3 “ ”
when ) The Greek letter X (capital sigma, corresponding to our letter S), stands for “sum.” The
lards, * index of summation k tells us where the sum begins (at the number below the % symbol)
g the e and where it ends (at the number above X ). Any letter can be used to denote the index, but
srded R the letters i, j, and k are customary.
— The index k ends at k = n.
mn Y A

- The summation symbol ay
52 eaiimexapm) 1 e ay is a formula for the kth term.
= ~
3 The index k starts at k = 1.
e _ ,
— y Thus we can write
195 5 11

: RP+22+32+482 452462+ +8+9P+100+112= Dk

— P k=1
only . and
if the_ A

100

fQ) + £2) + f3) + -+ + £(100) = X 1(0).

The lower limit of summation does not have to be 1; it can be any integer.




5.2 Sigma Notation and Limits of Finite Sums 315

The lengths of the subintervals are Ax; = 0.2, Ax, = 0.4, Ax; = 04, Ax; = 0.5, and
Axs = 0.5. The longest subinterval length is 0.5, so the norm of the partition is || P|| = 0.5.
In this example, there are two subintervals of this length. B

Any Riemann sum associated with a partition of a closed interval [ a, b ] defines rect-
angles that approximate the region between the graph of a continuous function f and the
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.10. We will see in the
next section that if the function f is continuous over the closed interval [a, b], then no
matter how we choose the partition P and the points ¢, in its subintervals to construct a
Riemann sum, a single limiting value is approached as the subinterval widths, controlled
by the norm of the partition, approach zero.

ma Notation i 5‘: 3a b.
jite the sums in Exercises 1-6 without sigma notation. Then evalu- - :

NI

&

c. i(a,‘ + b)
k=1

N

Ll -~
M= g
~

d. (@ - b = 2a)
.& k=1 =
2. *gl k n n
1egative ! ; p 18. Suppose that > @, = 0 and b, = 1. Find the values of
the afea ' cos krr 4. Y sinkm . s
i i k=1 2 &
)+ s . ) a. 8 b. Y250b,
) . k=1 k=1
from the SRS 1) sin 7 6. D (1) cos knr \ \
1 k=1 c. E{a* + 1) d. E(b* -1
hich of the following express 1 + 2 + 4 + 8 + 16 + 32 in k=1 k=1

a notation? Evaluate the sums in Exercises 19-32,

B 5 4 10 10 10
‘:;Ezt—l b. Ezk c zznl 19. a. Ek b. Ekz . Eki
- o] o =) = ¥==1 =1 = =
' L Which of the following express 1 — 2 + 4 — 8 + 16 — 32 in 13 13 13
the sub- SRS : B S 20, a. Dk b. Tk o S
1 widh igma notation? ;Z"f E 2‘1
i Bl 6 5 3
ghl-hﬂ.ﬁd ¥ , (__2 =1 b. (_l)k 2& c. {__l)l-i-] 2k+2 7 5 L
mple 8} i E Y 2:', FE_Z 21. E(&H} 22. ?-:11;_5

hich formula is not equivalent to the other two?

i - 6 6

Eaacl ' Sl i —”" B Y6-8) 4 Y#E -5

Et < k-1 v k={|k 4 & k=1 k=1
poim‘d ;-_-, formula is not equivalent to the other two? 2. i kG + 5) 2. é K2k + 1)

¥ 4 3 ~} k=1

R D (k- 1) b. Y, (k+ 1) ¢ Ok
3 WEEY *z' & & 7. $E 4 (S ﬁ‘,) ok
interval “225 7\~ 4

s the sums in Exercises 11-16 in sigma notation. The form of =
lﬂswerw:]]dc nd on your choice of the lower limit of summation. 7 264
o 29. a. 33 b. 37 c. 310

(l+2+3+4+5+6 12.1+4+9+16 & “ &

fest (lon ]
estof i

‘he paﬂi‘.
; P +l 1 | 4 36 17 71
Y k=9 k=3 k=18
1,1 1,1 £,2 3.4 3
here &% TR 16. —c+s-S+7--% n n n
23 4°5 5°5 5 55 M oa D4 b e e« Dk-1)
8 of Finite Sums = e et
e n n n n n
s 4 8uppose that > a, = —5 and b, = 6. Find the values of 32. a. E(% + 2n) b. Y5 c 2%
; k=] k=1 k=1 k=1 k=1
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Riemann Sums

Limits of Riemann Sums

In Exercises 33-36, graph each function f(x) over the given interval. For the functions in Exercises 39-46, find a formula for the Riem;
Partition the interval into four subintervals of equal length. Then add sum obtained by dividing the interval [a, b] into n equal subinte
to your sketch the rectangles associated with the Riemann sum and using the right-hand endpoint for each ¢;. Then take a limit of the
$4_,f(c) Ax,, given that ¢ is the (a) left-hand endpoint, (b) right- sums as n — o9 to calculate the area under the curve over [a, b].

hand endpoint, (¢) midpoint of the kth subinterval. (Make a separate 39, f(x) = 1 — x* over the interval [0, 1].

sketch for each set of rectangles.)
33, fy=x*—-1, [0,2]

M, fo)=-x% [0.1]

35. f(x) =sinx, [—-m 7]

36. f(x) =sinx + 1, [-m, 7]

40. f(x) = 2x over the interval [0,3].

41. f(x) = x* + 1 over the interval [0,3].
42. f(x) = 3x2 over the interval [0, 1].

43. f(x) = x + x2 over the interval [0, 1].
44. f(x) = 3x + 2x* over the interval [0, 1].

37. Find the norm of the partition P = {0, 1.2, 1.5,2.3,2.6,3}. 45. f(x) = 2x* over the interval [0, 1].

38. Find the norm of the partition P = {-2,

5.3 The Definite Integral

-1.6,-0.5,0,08,1}. 46. f(x) = x* = x* over the interval [—1,0].

In Section 5.2 we investigated the limit of a finite sum for a function defined overac =-._
interval [a, b] using n subintervals of equal width (or length), (b — a)/n. In this secti
we consider the limit of more general Riemann sums as the norm of the partitionsy
[a, b] approaches zero. For general Riemann sums, the subintervals of the partitions ng
not have equal widths. The limiting process then leads to the definition of the definite i
gral of a function over a closed interval [a, b]. :

Definition of the Definite Integral

The definition of the definite integral is based on the idea that for certain functions, a
norm of the partitions of [a, b] approaches zero, the values of the corresponding Riem;

sums approach a limiting value J. What we mean by this limit is that a Riemann sum ¥ '
be close to the number J provided that the norm of its partition is sufficiently small (so
all of its subintervals have thin enough widths). We introduce the symbol € as a s
positive number that specifies how close to J the Riemann sum must be, and the sym
as a second small positive number that specifies how small the norm of a partition musf
in order for convergence to happen. We now define this limit precisely.

DEFINITION Let f(x) be a function defined on a closed interval [a, b]. We say,
that a number J is the definite integral of f over [a, 5] and that J is the limit of!
the Riemann sums X}_, f(c,) Ax; if the following condition is satisfied:
Given any number € > 0 there is a corresponding number 8 > 0 such
for every partition P = {xg, X, ... ,X,} of [a,b] with || P|| < & and any choice
of ¢ in [ Xy, x4}, we have '

< E.

L}‘, flc) Ax, — J
=1

The definition involves a limiting process in which the norm of the partition goes to 2

We have many choices for a partition P with norm going to zero, and many choic
points ¢, for each partition. The definite integral exists when we always get the
J, no matter what choices are made. When the limit exists we write it as the definite inté]

J= lim >, f(cy) Ax.
Iﬂﬂﬂ:; B A%



324  cChapter 5: Integrals

Alternatively, we can use the following reasoning. We start with the idea from arig

metic that the average of n numbers is their sum divided by n. A continuous function fa - 6
[a, b] may have infinitely many values, but we can still sample them in an orderly wg
We divide [a, b] into n subintervals of equal width Ax = (b — a)/n and evaluate f ',_ E 7.
point ¢, in each (Figure 5.14). The average of the n sampled values is
8
fle) + fle)) + -+ + flea) _ 1<
n n E flew Usi
k=1
9.
M “ ¥ = & o
:b"aZf(Ck) ;\_\=’ = I'w%:b-

FIGURE 5.14 A sample of values of a
function on an interval [a,b].

=

I n
o = Ef(ck) Ax. Constant Multiple Rule
k=1

The average is obtained by dividing a Riemann sum for f on [a, b] by (b — a). A _' * .
increase the size of the sample and let the norm of the partition approach zero, the a: i

approaches (1/(b — a)) f f(x) dx. Both points of view lead us to the following deﬁm .-i

DEFINITION If f is integrable on [a, b], then its average value on [a, br]
also called its mean, is 4

i e

av(f) =

EXAMPLE 5  Find the average value of f(x) = V4 — x* on [-2,2].

Solution We recognize f(x) = V4 — x? as a function whose graph is the upper
circle of radius 2 centered at the origin (Figure 5.15). W

Since we know the area inside a circle, we do not need to take the limit of Riemy
sums. The area between the semicircle and the x-axis from —2 to 2 can be compmed
the geometry formula

FIGURE 5.15 The average
value of f(x) = V4 — x’on
[—2,2] is w/2 (Example 5). The
area of the rectangle shown here is
4+(7/2) = 2mr, which is also the
area of the semicircle,

Area cqr? = ':':'(2)2 = 2.
Because f is nonnegative, the area is also the va.lue of the integral of f from —2 to :
/ V4 — x*dx = 2.
-2

Therefore, the average value of f is

2
av(f) = 5%/2\/4 “Hdi=tom=T

Notice that the average value of f over [—2, 2] is the same as the height of a rectang
[—2, 2] whose area equals the area of the upper semicircle (see Figure 5.15).

Interpreting Limits of Sums as Integrals

n ol
. 2 . P s TI
Express the limits in Exercises 1-8 as definite integrals. A I!I‘iin-o é‘?(c" 3¢9 A%, Where P is a partition of [~ _'

m E(}) Ax,, where P is a partition of [1,4]

1. lim Ec,, Ax;, where P is a partition of [0, 2] 4 i
L&Y

IPli—0

22.’.} Ax;, where P is a partition of [—1,0]

||P —0 = Hm 2 = Axh where P is a partition of [2,3]



1 arith. -
|nf0n
Y Way,
+ f atg

;

'“lgi._;;azw — ;2 Ax;, where P is a partition of [0, 1]
Hm 2(5&: ¢) Ax,, where P is a partition of [~ /4,0]
E(lan ¢;) Ax;, where P is a partition of [0, 7/4]

“ g the Definite Integral Rules
ppose that f and g are integrable and that

Ax g 2 5 5
) —a ’_/f(x)dx=—4, ff(x)d.x=6, _/ g(x) dx = 8.
e 1 I
| Use the rules in Table 5.6 to find
g . 2 1
Asve s [ s b [ wa
i i W ‘- 2 s
verage i 2 5
ition, '-/Sf{x)dx d. /f(x)dx

5
] j [fx) — g(0)] dx f. f [4f(x) — g(x)] dx
: |
gppose that f and h are integrable and that
.'-‘_, _-’ff(x)dx =-], f fx)dx = 5, / h(x) dx = 4.
e/ 7 7
—1 {Use the rules in Table 5.6 to find
b 9
a f ~2f(x) dx b. / [f(x) + hx)] ax
-~
semi- B o
Y ." f[Zf(x)-Eh(x} Jdx d. ]f(x}dx
mann
using 3 ] f(x) dx f. f [h(x) = f(x)] dx
5" upposethat flf(x]dx— 5. Find
1. / £(u) du b. f V3f(z) dz
1
2
fzf(r)dr d. / [—f(x)] dx
1 1
¢ Buppose that [, g(¢) dt = \/2. Find
A -3 0
= f g(n) dr b. / g(u) du
e do
eo‘i [ [—g(x)] dx d. g%dr
! suppose that f is integrable and that fu f(z)dz = 3 and

r
. fq f(z) dz = 7. Find

4 3
pe f.f(z}dz b. /f(r}dr
e 3 4

b Suppose that h is integrable and that f_'] h(r)dr = 0 and
2, h(r) dr = 6. Find

3 1
f h(r) dr b. — f h(u) du
1 3

s 1
2. / @ - |x|)dx
=1
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Using Known Areas to Find Integrals
In Exercises 15-22, graph the integrands and use known area formulas to
evaluate the integrals.

4 iz
15. f (g + 3) dx 16. (2 + 4) dx
=2 1/2

3 0
17./ V9 — x*dx 18.[\/16~xzdx
-3 -4

1 1
19. / |x] dx 20. | (- |x]yax
= -1

z/_i(umm

Use known area formulas to evaluate the integrals in Exercises 23-28.

b
B.fidx. b>0
5 2

b
ZS.fZSds. 0<a<b
a

27. f(x) = V4 - x on a [—2,2],b. [0,2]
28, f(x) = 3x + V1 —-2* ona [-1,0],b. [-1,1]

Evaluating Definite Integrals
Use the results of Equations (2) and (4) to evaluate the integrals in
Exercises 29-40.

V2 25 27
29, / x dx 30. xdx 31. f 6 de
1 *Jos P

52 V7 03
32 / rdr 33, f xldx 34, / $* ds

V2 0 0

12 2 2%
3, f 2 3. f 0 df W, f ydt

0 0 a

\V3a Vb b
38. / x dx 39, / x*dx 40. / xtdx
a 0 0

Use the rules in Table 5.6 and Equations (2)—(4) to evaluate the integrals

in Exercises 41-50.
2
42, / Sx dx
0

1
41./7dx
3
Vi
44.] (r—V2)dr
0

2
43. /(2: — 3)dt
0
0
46. f{Zz = 3)dz
3

[ pes)e

2 1
47. f 3u? du 48, 24u® du
1 1/2

b
24./4de. b>0
0

b
%./Sfdt, 0<a<hb
a

49, ](3x‘2+x—5}dx 50./(311+x—-5}dx
0 1

Finding Area by Definite Integrals

In Exercises 51-54, use a definite integral to find the area of the region
between the given curve and the x-axis on the interval [0,b].

51, y =347 52. y = mx?

53, y=2x s4.y='-"2—+1
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26

inding Average Value
| Exercises 5562, graph the function and find its average value over

\e given interval.

5, fy=x*—1 on [0\/5}

12
6 f=-% on [0,3]

7. f)=-3*—1 on [0,1]
8. foy=3*-3 on [0,1]

9. f)=(@—172 on [0,3]

0. fy=r -1 on [-21]

1. g =|x] =1 on a [-1,1], b. [1,3],and c. [-1,3]
2. h(x) = —|]x| on a. [~1,0], b. [0,1],and ¢. [, 1]

Definite Integrals as Limits of Sums
Use the method of Example 4a or Equation (1) to evaluate the definite
integrals in Exercises 63-70.

b
63.fcdx
a

b
65./x2dx, a<bhb
a

2
67. f (3 — 2x + 1) dx
-1

B
69./):3:11:, a<hb

7]
64. / (2x + 1) dx
0

0
66. [ (x — x%) dx
5]

1
68./13dx
-1

1
70. / (3x — &) dx
0

Theory and Examples
71. What values of @ and b maximize the value of

/:[x - x2) dx?

(Hint: Where is the integrand positive?)
72. What values of a and b minimize the value of

fa (et — 22) a2

73. Use the Max-Min Inequality to find upper and lower bounds for

the value of
K o
dx
fu 1+ 22

74. (Continuation of Exercise 73.) Use the Max-Min Inequality to
find upper and lower bounds for

s g
f Sdx and f ;dx.
g L*X o5l T x

Add these to arrive at an improved estimate of

|
1
fu 1+x2dx'

- -

75. Show that the value of | Dl sin (x?) dx cannot possibly be 2.

76. Show that the value of [, Vx + 8 dx lies between 2V2 ~ 23388 -
and 3. LB
77. Integrals of nonnegative functions Use the Max-Min Inequali
to show that if f is integrable then

b
fx)=0 on [ab] = ff{x)dxz{).

78. Integrals of nonpositive functions = Show that if f is integrables
then 4

b
fx)=0 on [ab] = ff(x)dx-so.

S

K

- 84, Upper
tion o]
79. Use the inequality sin x =< x, whlch holds for x = 0, to find ar a. Dr
upper bound for the value of f o Sin x dx. f”r
f
80. The inequality sec x = 1 + (11/2) holdslon (—m/2,m/2). U [Zl
it to find a lower bound for the value of [ sec x dx. for.
81. If av(f) really is a typical value of the integrable function _f(x) inl
[a,b], then the constam function av(f) should have the s b. Su
integral over [a, b] as f. Does it? That is, does ' sull
b b
/ av(f) dx = f flx) dx? of
a a
: (v
: 85, Useth
Give reasons for your answer. _ B
82. It would be nice if average values of integrable functions obeyed sin
the following rules on an interval [a,b].
a. av(f + g) = av(f) + av(g)
b. av(kf) = kav(f)  (any number k) o fin
e av(f) = av(g) if f(x) =gx) on [ab]. x=7
Do these rules ever hold? Give reasons for your answers. a. Pa
len
83. Upper and lower sums for increasing functions _ b, Fir
a. Suppose the graph of a continuous function f(x) rises steadil] 86, Suppo
as x moves from left to right across an interval [a, b]. Letd B0 the aci
be a partition of [a, b] into n subintervals of equal leng i At
Ax =(b = a)/n. Show by referring to the accompanymg i
ure that the difference between the upper and lower suma as shoy
f on this partition can be represented graphically as the are =
of a rectangle R whose dimensions are [ f(b) — f(a) ] by Ax a If
(Hint: The difference U — L is the sum of areas of rectang _ £o7
whose djagona.!s QDQI! QiQZr ey Qﬂ“']Qﬂ lie appro imal ;
along the curve. There is no overlapping when these rectal e
gles are shifted horizontally onto R.) | anq
b. Suppose that instead of being equal, the lengths Ax; 0f " boIf
subintervals of the partition of [a, b] vary in size. Show & L cor
U - L = |f(b) — f(@)| Axmaxs
ang
where AXp,, is the norm of P, and hence that limypjs ¢ Ex
(U~-1L)=0. reg




—
y = fx)
-f(b) - fla)
) R
0, 2 !_ 1
e
Ip=a x x; Xa=b i

_ Upper and lower sums for decreasing functions (Continua-
of Exercise 83.)

a. Draw a figure like the one in Exercise 83 for a continuous
.i function f(x) whose values decrease steadily as x moves from
- left to right across the interval [a, b]. Let P be a partition of
2). Use. [a, into subintervals of equal length. Find an expression
b for U — L that is analogous to thé one you found for U — L
in Exercise 83a.

Suppose that instead of being equal, the lengths Ax; of the
bintervals of P vary in size. Show that the inequality

: U= L= |f(b) - ()] Atax

~of Exercise 83b still holds and hence that limjpj-g
w1 =0

8in h + sin 2k + sin 3k + -+ + sinmh
B cos(h/2) — cos((m + (1/2))h)
- 2sin (h/2)

% find the area under the curve y =sinx from x =0 to
: *' /2 in two steps:

& Partition the interval [0, 7/2] into n subintervals of equal
ength and calculate the corresponding upper sum U; then
dthehmnofUasn—»ooand Ax = (b —a)/n—0.

ose that f is continuous and nonnegative over [a, b], as in
ccompanying figure. By inserting points

Ut

; XXy oo s X5 Xpr « =« - 2 X1

#s shown, divide [ a, b ] into n subintervals of lengths Ax; = x; — a,
e —x, ... A =b-x X,—1, Which need not be equal.

. If m, = min {f(x) for xin the kth subinterval}, explain the
mnuectwn between the lower sum

L=m Ax; + myAx; + --- + m, Ax,

:;- and the shaded regions in the first part of the figure.

b. It M, = max {f(x) for x in the kth subinterval }, explain the
“eonnection between the upper sum
‘ U=M]A.11+M2ﬁ.¥2+
de the shaded regions in the second part of the figure.

& Explain the connection between U — L and the shaded
egions along the curve in the third part of the figure.

*+ M, Ax,
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b—a |

87. We say f is uniformly continuous on [a, b] if given any € > 0,
there is a & >0 such that if x;,x, are in [a,b] and
|x, = x| < 8, then [f(x;) = f(x,)| < €. It can be shown that a
continuous function on [a, b] is uniformly continuous. Use this
and the figure for Exercise 86 to show that if f is continuous and
€ > 0 is given, it is possible to make U = L < €*(b ~ a) by
making the largest of the Ax,’s sufficiently small.

88. If you average 30 mi/h on a 150-mi trip and then return over the
same 150 mi at the rate of 50 mi/h, what is your average speed
for the trip? Give reasons for your answer.

COMPUTER EXPLORATIONS

If your CAS can draw rectangles associated with Riemann sums, use
it to draw rectangles associated with Riemann sums that converge to
the integrals in Exercises 89-94. Use n = 4, 10, 20, and 50 subinter-
vals of equal length in each case.

1
-l
ss.fﬂ(l—x)dx—z
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1 4 ™ d. Solve the equation f(x) = (average value) for x using the ay
90. f (x4 de = 3 91. f cosxdx =0 age value calculated in part (c) for the n = 1000 partitioning,!
! 95, f(x) =sinx on [0,7] '

-
w4 1 .

92. f secixdx = 1 93, [ |xdx=1 96. f(x) = sin’x on [0.7]
0 =1

97. f(x)'—'xsin.-],'f on [%w]

2
94, ] }?dx (The integral's value is about 0.693.) |
! 98. f(x) = xsin’y on [%ﬂ-]
ises 95-102, CAS to perform the following steps:
In Exercises .use a (s} pc : e following steps 99, ) =xe* on [0, 1
a. Plot the functions over the given interval. >
b. Partition the interval into n = 100, 200, and 1000 subinter- 100. f(x) = ¢ on [0,1]
vals of equal length, and evaluate the function at the midpoint 101, () = Inx (2,5]
of each subinterval. * i ’
¢. Compute the average value of the function values generated in 102. f(x) = s on [O, ]
part (b). V1l —x

5 . 4 The Fundamental Theorem of Calculus
\' = In this section we present the Fundamental Theorem of Calculus, which is the central th .

HISTORICAL BIOGRAPHY of integral calculus. It connects integration and differentiation, enabling us to compute in
Sizlsane Newton grals using an antiderivative of the integrand function rather than by taking limits of Riem 2
(PeaRTARY <ums as we did in Section 5.3. Leibniz and Newton exploited this relationship and staf
' mathematical developments that fueled the scientific revolution for the next 200 years. ‘
y Along the way, we present an integral version of the Mean Value Theorem, whic y

. another important theorem of integral calculus and is used to prove the Fund:
Theorem. We also find that the net change of a function over an interval is the in
: T its rate of change, as suggested by Example 3 in Section 5.1.

7€), ::f;f" Mean Value Theorem for Definite Integrals
x In the previous section we defined the average value of a continuous function'_.

4 closed interval [a, b] as the definite integral [, f(x) dx divided by the length oF ¥
b — a of the interval. The Mean Value Theorem for Definite Integrals asserts thatl

" average value is always taken on at least once by the function f in the interval. '
The graph in Figure 5.16 shows a positive continuous function y = f(x) defined\

the interval [ a, b]. Geometrically, the Mean Value Theorem says that there is a numbel
[a, b] such that the rectangle with height equal to the average value f(c) of the fun tiol

base width b — a has exactly the same area as the region beneath the graph of f froma

-
|
I~
= 3

FIGURE 5.16 The value f(c) in the
Mean Value Theorem is, in a sense,
the average (or mean) height of f on
[a,b]. When f = 0, the area of the

rectangle is the area under the graph of 3
f fromatob, - 4l
b i
feXb — a) = [ F0)d. THEOREM 3—The Mean Value Theorem for Definite Integrals If f is cont 0

a ous on [ a, b], then at some point ¢ in [a,b), ’

b
fo) = 52> / £(x) dx.

L

Proof  If we divide both sides of the Max-Min Inequality (Table 5.6, Rule 6) by o
we obtain -

b
minf < b—f—a/ £(x) dx < maxf.
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y EXAMPLE 8

Find the area of the region between the x-axis and the graph g

Awﬂ:% » y=x3-x-2 f{x)=x3—x2—-2x’—1£x£2. 2'_'. 9.£;J
’ Solution First find the zeros of f. Since ' p
-1 0 77 W= -2 -22=x(2-x-2) =x(x+ 1)x - 2), n
=|-8 ¥,
e |8 l the zeros are x = 0, —1, and 2 (Figure 5.22). The zeros subdivide [—1,2] into two subig
i3 tervals: [—1,0], on which f = 0,and [0, 2], on which f = 0. We integrate f over cagd * 4
subinterval and add the absolute values of the calculated integrals. : B
@ PR | 0 ~ Find dy
f(xﬂ-xl—mdx=["——£——x2] =0—{1+1—1}=i
L 4773 " 473 12 . -
FIGURE 5.22 The region between the 2 . o
curve y = x> — x* — 2x and the x-axis -/{x3—x2—2x}dx:['ﬁ—x—l—x2} ={4_§_4]_0=_§ _ ..
(Example 8). 0 4 3 0 3 3 -.;1?5 4.y
The total enclosed area is obtained by adding the absolute values of the calculated integralfll
. -;. 9.y
Total enclosed area = 3. + - -
27|73 712 -
- 0y
37
- b

Evaluating Integrals
Evaluate the integrals in Exercises 1-34.

Vi
23./ £+ Vs,
1 5

L1/

B(x1+1)(2 - x3) 8
2, [

2 1,
- /x(x—B)dx = / = ek 25 1T—~Sinzxdx 26 ’ (cos x + sec )zdx:
02 -1 . «nzsinx . s X X
1 d
3.[ el 4.fx29"¢: ‘ " 4
2+ 3) - 27. j |x| dx 28. f 5(cosx + |cos x|) dx
4 3 -4 0 I
S.f(3x2—§)dx ﬁ.f(x’-lt+3]dx In2 2 ¥ Area
! -2 2. [ edx 30, / (3 - e") dc
I E?) 0 1 3
7 / (x2 + Vax)dx 8. / x75/5 dx 12 V3 3
0 L 31 f 8 i 32 / dix E
w/3 s ’ 0 N1 — xz ’ 0 1+ 41'2
9, / 2 sec? x dx 10. f (1 + cosx) dx 4 0
; g 3. /x“'ldx M. [ T ldx
2 -1

Im/4 w3 .
1L / csc 6 cot A df 12. / 4ﬂg5£—du
- 0 cos” u

0 w/3
13. f U—;Lz‘d: 14, [ s i di
wf o

2 w/3
w4 /6
15. / tan®x dx 16. / (sec x + tanx)? dx
0 0
n/8

—w/4
17. / sin 2x dx 18. / (4 sec?t + 1’5) dt
0 ~mr/3 t
-1 _ Vi
19, (r+ 1)?adr 20. / (t+ D(r2 +4)ar
1 -3

o | 5 _ 2
22, / s> S
-3y

3
u 1
21. [\/i ('2— == ';5') du

- definite integral. (Hint: Keep in mind the Chain Rule in guessing

In Exercises 35-38, guess an antiderivative for the integrand functi
Validate your guess by differentiation and then evaluate the: gil

antiderivative. You will learn how to find such antiderivatives il

next section.)
2[ ;>
36. f T dx
1

1
35 f xe* dx
0
w3
xdx 38. / sin? x cos x dx
0

s
37.
/1 V1 4+ x

Derivatives of Integrals
Find the derivatives in Exercises 39-44.

a. by evaluating the integral and differentiating the result.
b. by differentiating the integral directly.

~ T



e

e o

s s

ction.
given
ng 4l -

¥
!1\
LA sin x
4 costdt a0, & / 3 dt
0 dx 1
A d tanfl
| vadu 4. sec’ydy
/o b/
e Vi
| erar w4 [ (x‘ + _—3’—)dx
Jo dt J, V1 -x
gy/dx in Exercises 45-56.
=fv1+r’d: 46.y=f%d:, x>0
0 1
%, , 2
=/ sin (12) dr 48, y =x/ sin () dr
o Jax 2

* 2 X x 2

&-_gf zrz d:—/ 3 dt

B P +4 3 £+4
(/ e+ l)“'dt)

=f df |It Ci

e
= 53 }'=/ ——dt
ks g

sin'x
f 55 y=/ costdt
[] . 0

i

/ sin”! tdt

5760, find the total area between the region and the x-axis,

=—32 -2 -3=x=<2

Wy =32-3 -2=x=2

Y= -3 +2% 0=x=2

Y=y —x -1=x=<8

the areas of the shaded regions in Exercises 61-64.

y
>~
e =:7
) )
X=1T
y=1+cosx
0 e
A
__'ln y=sinx
= X
T St O\
6 6

2
=
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ik

Initial Value Problems

Each of the following functions solves one of the initial value prob-
lems in Exercises 65-68. Which function solves which problem? Give
brief reasons for your answers.

X
&y—flm—S
/ sectdt + 4

65. %=}. yr) = =3
y

X
b.y=fsoc!dr+4
0

d.y=f%d:—3
w

66. y' =secx, y(—1)=

61.y =secx, y0)=4 68 y =% y=-3
Express the solutions of the initial value problems in Exercises 69 and
70 in terms of integrals,

dy
69. o = secx, y2) =3

0 2=\/1+x€, y(1) =-2

Theory and Examples

71. Archimedes’ area formula for parabolic arches Archimedes
(287-212 B.C.), inventor, military engineer, physicist, and the
greatest mathematician of classical times in the Western world,
discovered that the area under a parabolic arch is two-thirds the
base times the height. Sketch the parabolicarchy = h — (4h /b)),
—b/2 = x < b/2, assuming that h and b are positive. Then use
calculus to find the area of the region enclosed between the arch
and the x-axis.

72. Show that if k is a positive constant, then the area between the
x-axis and one arch of the curve y = sin kx is 2/k.

73. Cost from marginal cost The marginal cost of printing a poster
when x posters have been printed is

de _ 1

dx ~ 2Vx
dollars. Find ¢(100) — ¢(1), the cost of printing posters 2-100.

74. Revenue from marginal revenue Suppose that a company’s
marginal revenue from the manufacture and sale of eggbeaters is
dr
dx
where 7 is measured in thousands of dollars and x in thousands of
units. How much money should the company expect from a pro-
duction run of x = 3 thousand eggbeaters? To find out, integrate

the marginal revenue from x = 0 to x = 3.

=2-2/(x+ 1)
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75. The temperature 7(°F) of a room at time 7 minutes is given by

T=85-3V25—1 for 0=1t=25
0,¢t= 16,and r = 25.
b. Find the room’s average temperature for 0 < ¢ = 25.
76. The height H(ft) of a palm tree after growing for f years is given by
=Vi+1+57 for 0=t=8.

a. Find the tree’s height whent = 0,1 = 4, and r = 8.
b. Find the tree’s average heightfor 0 = r = 8.
77. Suppose that [|" f(n)dt = x* — 2x + 1. Find f(x).

78. Find f(4) if [; f(f) dt = x cos mx.
79. Find the linearization of

i+l 9
f(x)=2-/2 Tt
atx = 1.

80. Find the linearization of

a. Find the room’s temperature when ¢ =

2
g(x)=3+f sec(r— 1)dt
1

atx=-—1

81. Suppose that f has a positive derivative for all values of x and
that (1) = 0. Which of the following statements must be true of
the function

gx) = ] f(r) dr?
L]

Give reasons for your answers.

g is a differentiable function of x.

. g is a continuous function of x.

a.
b
¢. The graph of g has a horizontal tangent at x = .
d. g has alocal maximum at x = 1.

e. g has a local minimum at x = l.'

f. The graph of g has an inflection point at x = 1.
g. The graph of dg/dx crosses the x-axis at x = 1.

82. Another proof of the Evaluation Theorem
a. Leta = x, <x < x<x, = bbeany partition of [a, b],
and let F be any antiderivative of f. Show that

F(b) = Fla) = Y, [F(x)

i=1

- F(xy)].

b. Apply the Mean Value Theorem to each term to show that

F(x,) — F(x—,) = f(c,)(x; — x;~;) for some ¢; in the interval
(xi-1, X;). Then show that F(b) — F(a) is a Riemann sum for f
on [a,b].

¢. From part (b) and the definition of the definite integral, show
that

b
E(b) — Fla) =f fx) dx.

83. Suppose that f is the differentiable function shown in the accon
panying graph and that the position at time 7 (sec) of a pam
moving along a coordinate axis is

s=/f(x)dx
0

meters. Use the graph to answer the following questions. Giy
reasons for your answers.

Y

. y=flx)

NS

5122 (5,2)

I 0,

1 1 1 1 L 1 1 ] > X

-?- 1 23435 \/‘)
._2_

a. What is the particle’s velocity at time t = 5?

b. Is the acceleration of the particle at time 1 = 5 positive, g
negative?

¢. What is the particle’s position at time ¢ = 37

d. At what time during the first 9 sec does s have its lar i
value? g

e. Approximately when is the acceleration zero?

f. When is the particle moving toward the origin? Away frof
the origin?

g. On which side of the origin does the particle lie at time t = y

A dr
84. Find lim —

Vel Vi

COMPUTER EXPLORATIONS

In Exercises 85-88, let F(x) = f: f(1) dt for the specified function

and interval [a, b]. Use a CAS to perform the following steps ai

answer the questions posed.

a. Plot the functions f and F together over [a, b].

b. Solve the equation F'(x) = 0. What can you see to be true abol
the graphs of f and F at points where F'(x) = 07 Is your obsel
vation borne out by Part 1 of the Fundamental Theorem coup!®
with information provided by the first derivative? Explain yof
answer. o

¢. Over what intervals (approximately) is the function F increasif
and decreasing? What is true about f over those intervals?

d. Calculate the derivative f' and plot it together with F. What ¢
you see to be true about the graph of F at points where f'(x) = (
Is your observation borne out by Part 1 of the Fundamental Th e
rem? Explain your answer. :

85, f(x) = & — 4x* + 3%, [0,4]

86. f(x) = 2¢* — 177 + 46x% — 43x + 12, l:{], g}

87. f(x) = sin 2x cos %

88. f(x) = xcosmwx, [0,2mw]

[0,27]




>com-
article

}oSCU

[n Exercises 89-92, let F(x) = f :m f(#) dt for the specified a, u, and 89
‘-"Usc a CAS to perform the following steps and answer the questions 9. a=0, ulx) =2 fx)=V1-2
g 91

4. Find the domain of F.
It JICalculnte F‘{x) anc_l detemtine i.ts zeros. For what points n its In Exercises 93 and 94, assume that f is continuous and u(x) is twice-
" domain is F increasing? Decreasing?

¢, Calculate F"(x) and determine its zero. Identify the local extrema
. and the points of inflection of F.

d. Using the information from parts (a)-(c), draw a rough hand-

] . . ulx)
_ sketch of y = F(x) over its domain, Then graph F(x) on your 42 ;
. CAS to support your sketch. 94. Calculate a2 j F(£) dt and check your answer using a CAS.
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La=1, ulx) =2, fox) = V1 —x?

La=0 ux)=1-x f=x*-2x-3
92.a=0, ux)=1-2, fW=x2-22&x-3

differentiable.

ulx)
93. Calculate % / f(t) dr and check your answer using a CAS.
a

e, or

irgest

from

The Fundamental Theorem of Calculus says that a definite integral of a continuous func-
tion can be computed directly if we can find an antiderivative of the function. In Section
4.8 we defined the indefinite integral of the function f with respect to x as the set of all
antiderivatives of f, symbolized by f f(x) dx. Since any two antiderivatives of f differ by
a constant, the indefinite integral f notation means that for any antiderivative F of f,

ff(x)dx = F(x)_+ C,

where C is any arbitrary constant, The connection between antiderivatives and the definite
integral stated in the Fundamental Theorem now explains this notation:
b b
f f@) dx = Fb) — F@) = [Fx) + C|. = Uf(x)dx] :
a a
When finding the indefinite integral of a function f, remember that it always includes an
arbitrary constant C.

We must distinguish carefully between definite and indefinite integrals. A definite
integral f : f(x) dx is a number. An indefinite integral f f(x) dx is a function plus an arbi-
trary constant C.

So far, we have only been able to find antiderivatives of functions that are clearly rec-
ognizable as derivatives. In this section we begin to develop more general techniques for
finding antiderivatives of functions we can’t easily recognize as a derivative.

Substitution: Running the Chain Rule Backwards

If u is a differentiable function of x and n is any number different from —1, the Chain Rule

tells us that
d un-H _ 'i",{
4(r) = v

From another point of view, this same equation says that «**'/(n + 1) is one of the anti-
derivatives of the function «"(du/dx). Therefore,

é_.‘;‘_ _“n+|
wla=to 4 (1)
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sub * Solution 1: Substitute u = 2% + 1.
lying
2zdz _ [ du Letu=2+1
- ul/3 du = 2z dz.
= fu_1/3 du In the form _I.u" due
/3
- % il Integrate.
= 3,5
Sl i &
01288 % T+ D)+ C Replace uby 22 4 1.
Solution 2: Substitute u = V/z2 + 1 instead.
‘;s 2zdz [ 3uPdu - Letu = V2 + L.
= .\3/'25T_i‘ = u w =24+ 13 du = 224z
t)dx
: = 3]14 du
L
A o il
s the =3 D + € Integrate.
ma-
= %(z2 +1)¥ +C Replace wby (=2 + 1)'%. W
79 5.9
ating Indefinite Integrals 1 9r* dr -
! _t: the indefinite integrals in Exercises 1-16 by using the given R =N = g
v bititutions to reduce the integrals to standard form.
12./12 4y + 120P + ) dy, u=y 4P+l
b 20x + 4dx, u=2c+4 ! ST e A0 e
— 4
13. / Vasin? (32 - 1)dx, u=x"~-1
B TVIx —1dx, u=7x-1 )
- Ly 1 1 1
- : 14. [ = cos? (—) dx, u=-—x
s an b 22 + 5)4dx, u=2+5 /12 > sl
tion :
titu- . 15. / csc? 26 cot 20°d6
nte- " {1‘4-‘:312‘“ u=x'+1
) a. Using u = cot 26 b. Using u = csc 26
[ G + 23 + 4x)dx, =3+ dx 16. / o
o3 V5x + 8
(1 +\/,;)'f’3 a. Usingu = 5x + 8 b. Usingu = V5x + 8
e de, u=1+ Vi
4 ! Vi Evaluate the integrals in Exercises 17-66.
R  sin3xdx, u=3x 8. /xsin{?.r”)dx. u =2 17. f\/rﬂds 18. /—-*l——ds
°°:_',{ Vs + 4
ou
ake 0| sec2ttan2edr, u=2u 19. fe\/ﬁ — 6% do 20. f3)=V7 - 3y dy
ons *
o3 T\ . i t / 1 / .
b, —cosy | singdr, u=1-cosz 2o i m—————dx 22. [ Vsinxcos® xdx
2 2) 2 2 Va(l + Va) :
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23, fsccztfix + 2)dx

s X X
25. /sm 3cos 3dx

i)

27.

=1

29, ./x”l sin (X2 + 1) dx

 fol5)

3 /sin 2+ l)d:
"] cos?(2t + 1)
/}icos (% = l)dt

1 . 1 1
35. /92 sm-écos Bdﬂ

33.

-

3.

X
dx
Vi Hx

| 1
39, /1—2 2-'de
lﬂ.f
43, /x[x - 1% dx

_3dx

45, f(x + D1 — x)Pdx

47, ff\/xz+ 1 dx

X
o [

51. f(cos x) &% dx

53.

1
\/;e‘vg

24. ftanzxseczxdx

7X 2
26. ftan 2sec 2dx

a Jolo-3)o

w) dv

secztanz
3 | ———d

Sec Z

3. /%cos(\/; + 3)dr

_cos VB
\/5 sin? \/_

33.[ ol 77
X

L (-1
40.-]; i

x
42./ xs_ldx

44, /x\/-@—_xdx

46. f(x + 5)(x — 5)" dx

48. f?ax"‘\/r"-i- 1dx

8 it
/{zx_ 1}2,-’3

52, / (sin 20) &7 49

sec?(eV* + 1) dx

54. f% e/*sec (1 + e tan (1 + ') dx

dx

xInx

dz
5. f1+ez

5
= /9 AT

5.

ln\ﬁr

56. n

dx
5B
[x\/x" -1

1
60. ———{
[7a=

o1, [Eodx 6 [£iax
V1 - 2 V1-2
(sin™'x) dx Vtan ' x dx =
= f Vi-2 o f Lot .
% [ “Samis
"/ (tan'y)(1 + P ©J iy V1 - y?

If you do not know what substitution to make, try reducing the inte

gral step by step, using a trial substitution to simplify the integral a big
and then another to simplify it some more. You will see what we
mean if you try the sequences of substitutions in Exercises 67 and 68

18 tan®x sec’ x
67. e ——— gy
/ (2 + tan’x)?

a. u = tanx, followed by v = «*, thenby w = 2 + v
b. u

c. u=2+ tan’x

68. /Vl + sin®(x — 1)sin (x — 1) cos (x — 1) dx

x — 1, followed by v = sin u, thenby w = 1 + v?

I

tan’x, followed by v = 2 + u

a u
b. u = sin(x — 1), followed by v = 1 +
e u=1+sin?(x—1)

]

Evaluate the integrals in Exercises 69 and 70.

(2r = 1) cos V3(2r — 1+ 6d

69. r
3(2r — D2+ 6 -
g [0 VE
Vocos Vo

71. Find the integral of cot x using a substitution like that in Example 7

72. Find the integral of csc x by multiplying by an appropriate fort

equal to 1, as in Example 8b.

Initial Value Problems >
Solve the initial value problems in Exercises 73-78.

73. %‘i— 12032 = 1Y, s()=3
dy
dx

74, — =4x (2 + 873, y0) =0

ds
5. 5 =8 sml(r + 12) 5(0) = 8

o (T _ L
76. 7 3cos (4 B), r(0) =

d*s . T "
T Ei = —4sin (21‘ - E)' 5'(0) = 100, s(0) =0

78. %= 4sect2xtan2x, y'(0) =4, y0)=-

79. The velocity of a particle moving back and forth on a line |

v = ds/dt = 6sin2t m/sec for all . If s = 0 when ¢ = 0, fin
the value of s when t = /2 sec.

80. The acceleration of a particle moving back and forth on a line ¥
a = d%/df = m?cos mtm/sec? for all 1. If s =0 and v

8 m/sec when 1 = 0, find s when t = 1sec.

= i

5

=3

.“H_q'

...‘*

“1.'_‘:‘_"' = "ﬁ"“

oy B
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ny=0 2 &
GURE 5.31 The arca of the blue
jon is the area under the parabola
'x minus the area of the
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Although it was easier to find the area in Example 6 by integrating with respect to y
rather than x (just as we did in Example 7), there is an easier way yet. Looking at Figure

5.31, we see that the area we want is the area between the curve y =

x and the x-axis

for 0 = x < 4, minus the area of an isosceles triangle of base and height equal to 2. So by
combining calculus with some geometry, we find

4
Mw=[\&¢—%mm
0

2 m]‘
==x -2
3 0

M O . .
=5@-0-2=

10

3"

.- : ) 506

jating Definite Integrals

. i 3
fl 1
< _'/r\/l—r?dr b.
i} ]
ctioy, F e
. .. tan x sec?x dx b.
he line B
p— . o
K & | 3cos®xsinxdx b.
ot R
- b
I! } . l
e j P+ ) di b.
Rto
3
."__ ﬁ
2 + 1) ar b.
6 o
section i 5r
¥ o |
.j_]———(“ Y ,.z)zd" b.
g NG
'3 i
A f '—o—vdv b.
Sy (1 4 v32)2
. V3 4
2
el dx b.
.jl; Vaxt + 1
B
Tea x
. dx b.
|
.
t\V4 + Srde b.
o

4 ..-' v “"6
(1 — cos 3¢) sin 3t dt
0

&

 th Substitution Formula in Theorem 7 to evaluate the integrals in

0
ny+ldy
-1

/}m dr

0

tan x sec?x dx
~m/4

3w
f 3 cos®x sin x dx
2

o

1
/ A1+ )t

1

0
/ i + 1)\A3dr
Y

1
Sr
—g]
fn @+

f 0V o
(1 + )

V3
/ 4x dx
V3V +1
0 3
b
-1 ¥ +9

9
/rV4 + Stdt

|

/3
/ (1 — cos 3r) sin 3t dt
w/6

n
COs Z

13. a. _—
o V4 + 3sinz

dz

]
14. a. f (2 + tan%) sec2=ds b.
—f2

1
15. f V4 25t + 2) dt
]

n/6
17. / cos ™ 26 sin 260 df
0

2

COS Z

b. ———dz
-/—1.' V4 + 3sinz

/2

r 2!
(2 + tan 2) sec 5 dt
-7/2

4 dy
o ~/1. 2 y(l + \/y_)1

18.

Inf2
s(0). .. 28
_/,; cot ( 6 sec”| & db

" w/4
19, ] 5(5 — 4cosn'sintdt 20 / (1 — sin 2¢)*/ cos 2t dt
0 0

1
21. / @y — y? +4y* + 1728122 - 2y + 4) dy
0

1
22, / 07 + 6y — 12y + 9y12(y? + 4y — 4) dy
1]

W
23./ V6 cos? (6%/2) do
0
/4
25, / (1 + e sec?d db
0
" sint
2% [n 2 — cos rdf
2
2, ] 2hnx
1
4
dx
31.
/2 x(In x)?

/2
X
tan 5 dx
./n 2

/3
35, f tan® 6 cos 8 df
0

33.

24.

26.

32.

36.

-12 i
[ 2 sin2(1 + ?) dr
-1

m/2

(1 + e csc?f df
w4

" _4sing
o 1 —4cosé
Y
lenx

6
2 2xVinx

/2
. f cot r dr
/4

w/12
] 6 tan 3x dx
0
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v % 5 cos 6 d8
’ —m/2 1+ {Sin 8)2
¢t dx

Iu\/i
% fu 1+ e*

38.

40.

42.

4.

/4
csclx dx

o6 1% (cot x)*

EIM

_ 4dr
L 1+ 11 + In*r)

v2/4
ds
0 V9 — ds?

2 cos (sec ! x) dx

N3 xVxE— 1

P ydy

o Viy+1

Find the total areas of the shaded regions in Exercises 47-62.

Al 4 ds
’ 0 V4 — &
s /2 sec?(sec”! x) dx
“Jvi o xVE =
45 o
T yWayr -1
Area
47. ¥
1k
y=xVd—xt
| X
-2 0 2
49, ¥

51. y
] y=1
/= cos?x
1 1_=_x
0 s ™
2
53. y
(-2,8) (2,8)

48.

50.

52

y

y= (1 —cosx)sinx

A

ol T

= Z(cos x)(sin(m + msinx))

56.

. - P
54. -}i Sy
3 5 J 68 v=
IF x=y A0 f'ﬂ.y-—
=7 0 y=
Ly ‘ B :m_.
0 1

L
Find the areas of the regions enclosed by the lines and curves £
Exercises 63-72.

63. y=x*—2 and y=2
65. y=x* and y=8x

64. y = 2x — x* and
66. y=x2—2 and y=



.‘nf and y=—x>+ 4x
&-7—2:2 and y=x*+4
By=x'—4x +4 and y=x
;:x-xm. a>0, and y=0

e there?)
gy =¥ - 4] and y=(*/2) +4

s 73-80.
2% x=0, and y=3

—4x=4 and 4x—y=16
k-’ =0 and x+2°=3
X+’ =0 and x+3?=2

e areas of the regions enclosed by the lines and curves in
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100. Find the area of the “triangular” region in the first quadrant that
is bounded above by the curve y = €92, below by the curve
y = €2, and on the right by the line x = 21n 2.

101. Find the area of the region between the curve y = 2x/(1 + x%)
and the interval =2 = x =< 2 of the x-axis.

¥ ] . . .
y=Vix| and Sy=x+6 (How many intersection points 102, Find the area of the region between the curve y = 2'~* and the

interval =1 = x = 1 of the x-axis.

103. The region bounded below by the parabola y = x* and above by
the line y = 4 is to be partitioned into two subsections of equal
area by cutting across it with the horizontal line y = ¢.

a. Sketch the region and draw a line y = c across it that looks
about right. In terms of ¢, what are the coordinates of the
points where the line and parabola intersect? Add them to
your figure.

b. Find ¢ by integrating with respect to y. (This puts c in the

/ limits of integration.)
i i y2=0 and x+y' = ¢. Find ¢ by integrating with respect to x. (This puts c into the
: =12 —1 and x=|y|V1 -y integrand as well.):
£ o = 104, Find the area of the region between the curve y = 3 — x* and
ax x=y -y and x=2
] i ¢ the line y = —1 by integrating with respect to a. x, b. y.
1 oy "h’ areas of the regions enclosed by the curves in Exercises 81-84. 105. Find the area of the region in the first quadrant bounded on the
' +y=4 and xX*—y=1 left by the y-axis, below by the line y = x/4, above left by the
- g’ —y=0 and 3®-y=4 curvey=1+\/i.andaboverigbtbythecurvey=2/\/.-1:.
! B +4>=4 and x+)y'=1 for x=0 106. Find the area of the region in the first quadrant bounded on the
{f_ B =2 and dr+ =0 left by the y-axis, below by the curve x = 2\Vy, above left by
! e the curve x = (y — 1)?, and above right by the line x = 3 — y.
ind the areas of the regions enclosed by the lines and curves in Exer- ’
£ 85-92. 5
B = 2sinx and y=sin2, O0=x=m 4 x=(y—17
3 by =8cosx and y=sec’x, —w/3=x=7/3 2L
* . x=3-y
, iy = cos (mx/2) and y=1-2x
; by = sin(7x/2) and y=x 1
y=sec’lx, y=tan’x, x=—m/4, and x=m/4 | =2y
3 Lo —
, —!-r"” X = tan’y and x = —tan’y, —w/4 <y < 7/4 0 1 2 *
i x=3sinyVeosy and x=0, 0<y=<mn/2
=sec’(mx/3) and y=x'3 -1=x=1 107. The figure here shows triangle AOC inscribed in the region cut
from the parabola y = x? by the line y = a”. Find the limit of
n Cur\re; . fes b os fsed by i the ratio of the area of the triangle to the area of the parabolic
3 arega o propeller-shaped region enclosed by the Seion aé aapigroackies 2ero:
furve x — y* = 0 and the line x — y = 0.
b Find the area of the propeller-shaped region enclosed by the
feurves x — y!/* = 0 and x — y'/* = 0.
. ‘. nd the area of the region in the first quadrant bounded by the
3 line y = x, the line x = 2, the curve y = 1/x%, and the x-axis.
ind the area of the “triangular” region in the first quadrant
X ounded on the left by the y-axis and on the right by the curves
Y =sinxand y = cos x.
 Find the area between the curves y = Inx and y = In 2x from
=ltox=S5.
(- L Fing _ . 108. Suppose the area of the region between the graph of a positive
ves i E _l_he ReeA TRRvesh. (e Ve St g ik thie ix-wxis: from continuous function f and the x-axis from x = a to x = b is
: . m/4t0x=m/3. 4 square units. Find the area between the curves y = f(x) and
_ 49 A ¥ind the area of the “triangular” region in the first quadrant that is y = 2f(x) fromx = atox = b.
bounded above by the curve y = ¢*, below by the curve y = ¢,
=X

and on the right by the line x = In 3.

¥i
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109. Which of the following integrals, if either, calculates the area of
the shaded region shown here? Give reasons for your answer.

f(x—{—x})dx /Zerx
b./( x— (x)dx = / —2x dx
1

y

y=-x
N

/ =1

110. True, sometimes true, or never true? The area of the region
between the graphs of the continuous functions y = f(x) and
y = g(x) and the vertical lines x = aand x = b(a < b) is

b
/ L) — ¢@)] ds

Give reasons for your answer,

Theory and Examples

111. Suppose that F(x) is an antiderivative of f(x) = (sinx)/x,
x > 0. Express
3
sin 2x
e
in terms of F.

112. Show that if f is continuous, then

| 1
/f(x}dx=]f(l = x)dx.
0 0

113. Suppose that

Find

ifa. fisodd, b. fiseven.
114. a. Show that if f is odd on [—a, a], then

/ f(x)dx = 0.

b. Test the result in part (a) with f(x) = sinxand @ = 7/2.
115. 1If f is a continuous function, find the value of the integral
s / ¢ fl)ax
f&) + fla—x)

by making the substitution « = a — x and addmg the resulting
integral to /.

116. By using a substitution, prove that for all positive numbers x 2

xy ¥
1 1
/ ;dr = f ?dt.
x 1

The Shift Property for Definite Integrals A basic property of dg
nite integrals is their invariance under translation, as expressed by {

equation 4
b b=c

/f(x)dr=/ fx + ¢)dx. 3

4

The equation holds whenever f is integrable and defined for the nee
sary values of x. For example in the accompanying figure, show tha

-1 1
/ x+2dx= / 2 dx
-2 0

because the areas of the shaded regions are congruent.

y

4

y=(x+2}3

1
- =2 =l g 0
117. Use a substitution to verify Equation (1).

118. For each of the following functions, graph f(x) over [a, b]
f(x + ¢) over [a — ¢, b — ¢] to convince yourself that
(1) is reasonable.

a f=x% a=0 b=1 c=1
b. f(x) =sinx, a=0, b=m, c=m/2
¢ fy=Vx—4, a=4, b=8, c=5

COMPUTER EXPLORATIONS
In Exercises 119-122, you will find the area between curves il
plane when you cannot find their points of intersection using Sim|
algebra. Use a CAS to perform the following steps:

many points of intersection they have.

b. Use the numerical equation solver in your CAS to
points of intersection.

c. Integrate |f(x) — g(x)| over consecutive pairs of in
values.

d. Sum together the integrals found in part (c).

2
lID.f(.t)=%3—£2———?_x+%. g =x—1

o
120. f(x) = —-3X3+ 10, g(x) =8 — 12x
121, f(x) = x + sin (), gkx) = x?
122, f(x) = x*cosx, gx)=x'—x



