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;i 6.1

es by Slicing

"8 the volumes of the solids in Exercises 1-10.

Mhe solid lies between planes perpendicular to the x-axis at x = 0
land x = 4. The cross-sections perpendicular to the axis on the
interval 0 < x < 4 are squares whose diagonals run from the
parabola y = —V/x to the parabola y = V/x.

solid lies between planes perpendicular to the x-axis at

alion © ;

y-axis are circular disks whose diameters run from the parabola
y = x° to the parabola y = 2 — x°,

| e solid lies between planes perpendicular to the x-axis at
w=—1 and x = 1. The cross-sections perpendicular to the
4 between these planes are squares whose bases run from the
Ssemicircle y = ~V/1 = x* to the semicircle y = V1 = x°.

we use 1& solid lies between planes perpendicular to the x-axis at

b= —1 and x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose diagonals run from the
emicircle y = —V/1 — x? to the semicircle y = V1 — x°,

"The base of a solid is the region between the curve y = 2'Vsinx
‘and the interval [0, 7] on the x-axis. The cross-sections perpen-
v inthe ‘dicular to the x-axis are

& cquilateral triangles with bases running from the x-axis to the
. curve as shown in the accompanying figure.

D. squares with bases running from the x-axis to the curve.

] e solid lies between planes perpendicular to the x-axis at
X =-m/3 and x = m/3. The cross-sections perpendicular to
e x-axis are

s circular disks with diameters running from the curve

Y= tan x to the curve y = sec x.

I+ Squares whose bases run from the curve y = tanx to the

" Curve y = gec x.

gthe base of a solid is the region bounded by the graphs of
¥=3x, y = 6, and x = 0. The cross-sections perpendicular to
PHIE X-axis are

« rectangles of height 10.

b. rectangles of perimeter 20.

.

—1 and x = 1. The cross-sections perpendicular to the |

8. The base of a solid is the region bounded by the graphs of
y = Vx and y = x/2. The cross-sections perpendicular to the
x-axis are
a. isosceles triangles of height 6.

b. semicircles with diameters running across the base of the solid.

9. The solid lies between planes perpendicular to the y-axisat y = 0
and y = 2. The cross-sections perpendicular to the y-axis are cir-
cular disks with diameters running from the y-axis to the parabola
x = V52

10. The base of the solid is the disk x*> + y* = 1. The cross-sections
by planes perpendicular to the y-axis between y = —1 and y = 1
are isosceles right triangles with one leg in the disk.

11. Find the volume of the given right tetrahedron. (Hinr: Consider
slices perpendicular to one of the labeled edges.)

12. Find the volume of the given pyramid, which has a square base of
area 9 and height 5.

| .‘,l.-l--'»'...l.al'.u.n.._.-'.:h P

13. A twisted solid A square of side length s lies in a plane perpen-
dicular to a line L. One vertex of the square lies on L. As this square
moves a distance h along L, the square turns one revolution about L
to generate a corkscrew-like column with square cross-sections.

a. Find the volume of the column.

b. What will the volume be if the square turns twice instead of
once? Give reasons for your answer.
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14, Cavalieri’s principle A solid lies between planes perpendicular
to the x-axis at x = 0 and x = 12. The cross-sections by planes
perpendicular to the x-axis are circular disks whose diameters run
from the line y = x/2 to the line y = x as shown in the accom-
panying figure. Explain why the solid has the same volume as a
right circular cone with base radius 3 and height 12.

Volumes by the Disk Method
In Exercises 15-18, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.
15. About the x-axis 16. About the y-axis
y y
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17. About the y-axis 18. About the x-axis
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Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 19-28 about the x-axis.

19.y=x} y=0, x=2
A.y=V9-42, y=0
23, y=Vecosx, 0<x=<mw/2, y=0, x=0
U y=secx, y=0, x=-n/d, x=mn/4
25

. y == e—-t'

20 y=x% y=0, x=2
2. y=x-x y=0

y=0 x=0, x=1

26. The region between the curve y = Vcotx and the x-axis from
x=mw/6tox=1m/2

27. The region between the curve y = l;’(2\/3_:] and the x-axis from
x=1/4t0x=4

8. y=¢"1 y=0, x=1, x=3

In Exercises 29 and 30, find the volume of the solid generated by

revolving the region about the given line.

29. The region in the first quadrant bounded above by the line

y= V2, below by the curve y = sec x tan x, and on the left by
the y-axis, about the line y = V2

30. The region in the first quadrant bounded above by the line y = 28
below by the curve y = 2sinx, 0 < x < /2, and on the left by
the y-axis, about the line y = 2

Find the volumes of the solids generated by revolving the .,:
bounded by the lines and curves in Exercises 31-36 about the y-axis,i

31. The regionenclosed by x = V5%, x=0, y=-1, y=1

32. Theregionenclosedby x = y*2%, x=0, y=2 |

33. The region enclosed by x = V2sin2y, 0<y=m/2, x=0

34. The region enclosed by x = Vcos(my/4), -2 <y =]
x=0

35 . x=2/Vy+1, x=0, y=0, y=3

36. x=V2y/(y*+ 1), x=0, y=1

Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded
regions in Exercises 37 and 38 about the indicated axes.

37. The x-axis 38. The y-axis
y
y 1'{1_
y=\cosx 4
B \ yi=. 1 : x=tany
\
T 0 T -
2 2 0 1

Find the volumes of the solids generated by revolving the -.-;-':_
bounded by the lines and curves in Exercises 39-44 about the x-axis.

9. y=x, y=1,
40.y=2\/;, y=2 x=0
4. y=x*+1, y=x+3
@ y=4-2 y=2-x
43. y = secx, y=V2, -w/d=x=mu/4
44. y = secx,

x=0

y=tanx, x=0, x=1
In Exercises 45-48, find the volume of the solid generated by revoly
ing each region about the y-axis. n
45. The region enclosed by the triangle with vertices (1, 0), (2, Ik
and (1, 1) .
46. The region enclosed by the triangle with vertices (0, 1), (1,
and (1, 1) 3
47, The region in the first quadrant bounded above by the parabol
y = x2, below by the x-axis, and on the right by the line x = 2
48. The region in the first quadrant bounded on the left by the circl
x* + y2 = 3, on the right by the line x = V/3, and above by the
line y = V3
In Exercises 49 and S0, find the volume of the solid generated by
revolving each region about the given axis. y
49, The region in the first quadrant bounded above by the curvé
y = x2, below by the x-axis, and on the right by the line x = I
about the line x = —1
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\ region in the second quadrant bounded above by the curve
iy = —3, below by the x-axis, and on the left by the line x = —1,
(iabout the line x = -2

y = 2| :II
left by |

plumes of Solids of Revolution
?1? d the volume of the solid generated by revolving the region

pounded by y = Vx and the lines y = 2 and x = 0 about
" b. the y-axis.

'egi ons
~dxls,

the x-axis.

the line y = 2. d. the line x = 4.

2d the volume of the solid generated by revolving the triangular
on bounded by the lines y = 2x,y = 0, and x = 1 about

. theline x = 1.

x=(}‘
y<0"

b. the line x = 2.
'tl d the volume of the solid generated by revolving the region
pounded by the parabola y = x? and the line y = 1 about

:( the line y = 1. b. theliney = 2.

the line y = —1. _
§ By integration, find the volume of the solid generated by revolv-
ding the triangular region with vertices (0, 0), (b, 0), (0, h) about

U8, the x-axis. b. the y-axis.

LY
T‘_,l;; and Applications
p The yolume of a torus The disk 22 + 32 < a* is revolved
gbout the line x = b (b > a) to generate a solid shaped like a
foughnut _and called a torus. Find its volume. (Hint:
-, Va® — y*dy = ma®/2, since it is the arca of a semicircle of
fadivs a.)
Jolume of a bowl A bowl has a shape that can be generated by
fevolving the graph of y = x2/2 between y = 0 and y = 5 about
e y-axis.
i 8. Find the volume of the bowl.
' vl b. Related rates If we fill the bowl with water at a constant
' . rate of 3 cubic units per second, how fast will the water level
in the bow! be rising when the water is 4 units deep?
‘olume of a bowl

hemispherical bowl of radius a contains water to a depth h.
* Find the volume of water in the bowl.

_Related rates Water runs into a sunken concrete hemi-
L Spherical bow! of radius 5 m at the rate of 0.2 m’/sec. How
= fast is the water level in the bowl rising when the water is

¢ 4m deep?

R Explain how you could estimate the volume of a solid of revolu-
by measuring the shadow cast on a table parallel to its axis of
ition by a light shining directly above it.
me of a hemisphere Derive the formula V = (2/3)7R’

#08s-sections with the cross-sections of a solid right circular cyl-

=1 . - 3 ;
% o er of radius R and height R from which a solid right circular
the “e pane of base radius R and height R has been removed, as sug-
we by' 1 steled 1_1)' the accompanying figure.
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60. Designing a plumb bob Having been asked to design a brass
plumb bob that will weigh in the neighborhood of 190 g, you
decide to shape it like the solid of revolution shown here. Find the
plumb bob’s volume. If you specify a brass that weighs 8.5 g Jem?®,
how much will the plumb bob weigh (to the nearest gram)?

y(cm)

x (cm)

61. Designing a wok You are designing a wok frying pan that will
be shaped like a spherical bow] with handles. A bit of experimen-
tation at home persuades you that you can get one that holds
about 3 L if you make it 9 cm deep and give the sphere a radius of
16 cm. To be sure, you picture the wok as a solid of revolution, as
shown here, and calculate its volume with an integral. To the
nearest cubic centimeter, what volume do you really get?
(1L = 1000 cm?)

y (cm)

62. Max-min The arch y = sinx, 0 = x = m, is revolved about
the line y = ¢,0 = ¢ = 1, to generate the solid in the accompa-
nying figure.

a. Find the value of ¢ that minimizes the volume of the solid.
What is the minimum volume?
b. What value of ¢ in [0, 1] maximizes the volume of the solid?
¢. Graph the solid's volume as a function of ¢, first for
0 < ¢ = 1 and then on a larger domain. What happens to

the volume of the solid as ¢ moves away from [0, 1]? Does
this make sense physically? Give reasons for your answers.

—
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63. Consider the region R bounded by the graphs of y = f(x) > 0, 64. Consider the region R given in Exercise 63. If the volume of .;:3

x=a>0,x=b>a, and y = 0 (sec accompanying figure). solid formed by revolving R around the x-axis is 6, and the yolll
If the volume of the solid formed by revolving R about the x-axis ume of the solid formed by revolving R around the line y = ~2 i
is 447, and the volume of the solid formed by revolving R about 107, find the area of R. 4 R
the line y = —1 is 8, find the area of R. i’ £
; L
y=f) y
] ! .

- -

i
L}
:
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62 Volumes Using Cylindrical Shells

In Section 6.1 we defined the volume of a solid as the definite integral V = f A(x ¥

where A(x) is an integrable cross-sectional area of the solid from x = a to x = b‘.’
area A(x) was obtained by slicing through the solid with a plane perpendicular tg
x-axis. However, this method of slicing is sometimes awkward to apply, as we will illg
trate in our first example. To overcome this difficulty, we use the same integral definitig
for volume, but obtain the area by slicing through the solid in a different way. &

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, hke W)
cutters. We slice straight down through the solid so that the axis of each cylinder is p
to the y-axis. The vertical axis of each cylinder is the same line, but the radii of tha
ders increase with each slice. In this way the solid is sliced up into thin cylindric --
of constant thickness that grow outward from their common axis, like circular tree fi
Unrolling a cylindrical shell shows that its volume is approximately that of a rectangt
slab with area A(x) and thickness Ax. This slab interpretation allows us to apply the s
integral definition for volume as before. The following example provides some insi
before we derive the general method. ‘

EXAMPLE 1 The region enclosed by the x-axis and the parabola y = f(x) =
is revolved about the vertical line x = —1 to generate a solid (Figure 6.16). Find
ume of the solid.

Solution Using the washer method from Section 6.1 would be awkward here b ‘
we would need to express the x-values of the left and right sides of the para
Figure 6.16a in terms of y. (These x-values are the inner and outer radii for a typH
washer, requiring us to solve y = 3x — x* for x, which leads to complicated formi
Instead of rotating a horizontal strip of thickness Ay, we rotate a vertical strip 0’, !
ness Ax. This rotation produces a cylindrical shell of height y, above a point x; Wil
the base of the vertical strip and of thickness Ax. An example of a cylindrical
shown as the orange-shaded region in Figure 6.17. We can think of the cylindri
shown in the figure as approximating a slice of the solid obtained by cutting
down through it, parallel to the axis of revolution, all the way around close to the it
hole. We then cut another cylindrical slice around the enlarged hole, then another, aii
on, obtaining n cylinders. The radii of the cylinders gradually increase, and the
of the cylinders follow the contour of the parabola: shorter to taller, then back lcu st
(Figure 6.16a).
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Summary of the Shell Method

Regardless of the position of the axis of revolution (horizontal or vertical), the
steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of
revolution. Label the segment’s height or length (shell height) and distance
from the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product 27 (shell radius) (shell height) with respect to the
thickness variable (x or y) to find the volume.

The shell method gives the same answer as the washer method when both are used to
calculate the volume of a region. We do not prove that result here, but it is illustrated in
Exercises 37 and 38. (Exercise 45 outlines a proof.) Both volume formulas are actually
special cases of a general volume formula we will look at when studying double and triple
integrals in Chapter 15. That general formula also allows for computing volumes of solids
other than those swept out by regions of revolution.

B E T L, e I T P S || e S S T L M T, = - =,

utio About the Axes

5. The y-axis 6. The y-axis

ises 1-6, use the shell method to find the volumes of the y y

>

2 x Revolution About the y-Axis
Use the shell method to find the volumes of the solids generated by
revolving the regions bounded by the curves and lines in Exercises
7-12 about the y-axis.

7.y=x y=-x/2, x=2
}’=\K§ 8 y=2 y=x/2, x=1

9, y=xt y=2-x x=0, forx=0

— — )= x2 =
x=3-y 10, y=2-x% y=x% x=0

AN 1. y=2%-1 y=Vx x=0
o/
12. y=3/(2Vx), y=0, x=1, x=4
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(smx}/): O<x=mw
13. Let f(x) = £=0

a. Show that xf(x) =sinx,0 =x =

b. Find the volume of the solid generated by revolving the
shaded region about the y-axis in the accompanying figure.

y

Si%.ﬂ(.t =7
y:
1, x=0 Y

0] g

(tanx)*/x, 0 <x=<m/4
0, x=10
a. Show that x g(x) = (tanx)?,0 = x = 7 /4,

b. Find the volume of the solid generated by revolving the
shaded region about the y-axis in the accompanying figure.

14. Let g(x) = {

Revolution About the x-Axis

Use the shell method to find the volumes of the solids generated by
revolving the regions bounded by the curves and lines in Exercises
15-22 about the x-axis

15.x=\/_\;. x==-y, y=2

16. x=y, x=-y, y=2, y=0
17. x=2y—y, x=0 18. x=2y—y} x=y
19. y=lx[, y=1 2. y=x, y=2%, y=2

2. y=Vx, y=0, y=x—-2
22.y=\/i, y=0, y=2—-x

Revolution About Horizontal and Vertical Lines

In Exercises 23-26, use the shell method to find the volumes of the
solids generated by revolving the regions bounded by the given curves
about the given lines.

2. y=3x, y=0, x=2
a. The );-axis b. The line x = 4
c. Theline x = —1 d. The x-axis
e, Theliney =7 f. Theliney = -2
4. y=2, y=8 x=0
a, The y-axis b. Theline x = 3
¢. The line x = -2 d. The x-axis
e. Theliney = 8 f. The line y = —1
25. y=x+2, y=x
a. Thelinex =2 b. The line x = —1
¢. The x-axis d. Theliney =4

26. y=x% y=4-32

a. Thelinex =1 b. The x-axis

In Exercises 27 and 28, use the shell method to find the volumes g

the solids generated by revolving the shaded regions about the ingj;
cated axes. 4
b. Theliney =1 4

d. Theline y =-2/3

27. a. The x-axis

¢. Theline y = 8/3

T 4
L x= 12072 -y
! X
0P~ 1

b. Theliney = 2
d. Theliney = —5/8

28. a. The x-axis
c. Theliney =35

Choosing the Washer Method or Shell Method
For some regions, both the washer and shell methods work well C
the solid generated by revolving the region about the coordinate 2
but this is not always the case. When a region is revolved about
y-axis, for example, and washers are used, we must 1nlegm!e wit
respect to y. It may not be possible, however, to express the integran
in terms of y. In such a case, the shell method allows us to integn
with respect to x instead. Exercises 29 and 30 provide some insights

29. Compute the volume of the solid generated by revolving the regio .15.
bounded by y = x and y = x* about each coordinate axis using!
a. the shell method. b. the washer method. 3

30. Compute the volume of the solid generated by revolving the I
angular region bounded by the lines 2y = x + 4,y = x, alf
x = 0 about .
a. the x-axis using the washer method.
b. the y-axis using the shell method.
c. the line x = 4 using the shell method.
d. the line y = 8 using the washer method.
In Exercises 31-36, find the volumes of the solids generated B

revolving the regions about the given axes. If you think it would.
better to use washers in any given instance, feel free to do so.

ki

k7]
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e triangle with vertices (1, 1), (1, 2), and (2, 2) about

. the x-axis b. the y-axis
line x = 10/3 d. theliney = 1
‘o :cgionboundedbyy=\[.y=2,x=0about
' x-axis b. the y-axis
'-.."',!_.1.. line x = 4 d. theliney = 2

fhe region in the first quadrant bounded by the curve x = y — )y
y-axis about

A b. theliney =1

The region in the first quadrant bounded by x =y — yhox=1,
ind y = 1 about

. the x-axis

) . the x-axis b. the y-axis

b, the line x = 1 d. theline y = 1

: \ .. .':egion bounded by y = Vxand y = x?/8 about
"".-“ the x-axis b. the y-axis

#The region bounded by y = 2x — x” and y = x about

. the y-axis b. the line x = 1

Th region in the first quadrant that is bounded above by the
gurve y = 1/x'/4, on the left by the line x = 1/16, and below by
the line y = 1 is revolved about the x-axis to generate a solid.
Find the volume of the solid by

. the washer method. b. the shell method.

L¥The region in the first quadrant that is bounded above by the
curve y = 1/V/x, on the left by the line x = 1/4, and below by
the line y = 1 is revolved about the y-axis to generate a solid.
Find the volume of the solid by

!_ * the washer method. b. the shell method.

and Examples
The region shown here is to be revolved about the x-axis to gener-
e te @ solid. Which of the methods (disk, washer, shell) could you
Lause to find the volume of the solid? How many integrals would be
required in each case? Explain.

AT

fith I'

-+ X

1
-2 of 1
he region shown here is to be revolved about the y-axis to gener-
a solid. Which of the methods (disk, washer, shell) could you

. Use to find the volume of the solid? How many integrals would be
" Tequired in each case? Give reasons for your answers.

tri- i ool
and 0 .

A,

1_

y=x

0 T
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41. A bead is formed from a sphere of radius 5 by drilling through a
diameter of the sphere with a drill bit of radius 3.

a. Find the volume of the bead.
b. Find the volume of the removed portion of the sphere.

42. A Bundt cake, well known for having a ringed shape, is formed
by revolving around the y-axis the region bounded by the graph
of y = sin(x? — 1) and the x-axis over the interval 1 = x=
V1 + m. Find the volume of the cake.

43. Derive the formula for the volume of a right circular cone of
height h and radius r using an appropriate solid of revolution.

44. Derive the equation for the volume of a sphere of radius r using
the shell method.

45. Equivalence of the washer and shell methods for finding vol-
ume Let f be differentiable and increasing on the interval
a = x = b, with a > 0, and suppose that f has a differentiable
inverse, f~'. Revolve about the y-axis the region bounded by the
graph of f and the lines x = a and y = f(b) to generate a solid.
Then the values of the integrals given by the washer and shell
methods for the volume have identical values:

fib) b
[ m(f7'()? — D) dy = f 27x(f(b) — f(x)) dx.
f a

(a)

To prove this equality, define

fln)
W(r) = / m((f7'())? — a®) dy
f

(a)

S(n = / 2mx(f(f) — f(x)) dx.

Then show that the functions W and § agree at a point of [a, b ]
and have identical derivatives on [a, b]. As you saw in Section
4.8, Exercise 128, this will guarantee W(r) = S(r) for all ¢ in
[a,b]. In particular, W(b) = S(b). (Source: “Disks and Shells
Revisited” by Walter Carlip, in American Mathematical Monthly,
Feb. 1991, vol. 98, no. 2, pp. 154-156.)

46. The region between the curve y = sec™'x and the x-axis from
x = 1 to x = 2 (shown here) is revolved about the y-axis to gen-
erate a solid. Find the volume of the solid.

]

47, Find the volume of the solid generated by revolving the region
enclosed by the graphs of y = e, y=0,x=0,and x =1
about the y-axis.

48. Find the volume of the solid generated by revolving the region
enclosed by the graphs of y = €2,y = 1, and x = In 3 about
the x-axis.
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L= f ds. Figure 6.27a gives the exact interpretation of ds corresponding to Equation (7).

Figure 6.27b is not strictly accurate, but is to be thought of as a simplified approximation of

Figure 6.27a. That is, ds = As.

EXAMPLE 5

Solution In the solution to Example 2, we found that

Lt

(a)

Therefore the arc length function is given by

(b)

FIGURE 6.27 Diagrams for remembering

the equation ds = Vdx* + dy’. This is the same result we obtained in Example 2.

A = (1, 13/12) as the starting point (see Figure 6.25).

Find the arc length function for the curve in Example 2, taking:

- , 2 12
1+ [f(x)]1=(%+;)-

s(x) =/ 1 + [f‘(r)]%irz/ (% + %2) dt
1 1

_[2_1f_2_1,u
|G-

To compute the arc length along the curve from A = (1, 13/12)to B = (4, 67/12), for
» X instance, we simply calculate

_4 1 11 _
==z ="

Finding Lengths of Curves !
Find the lengths of the curves in Exercises 1-14. If you have a grapher, In Exercises 15-22, do the following.

you may want to graph these curves to see what they look like.

1.

o -3 & tn B W
it LRl e i

lul
11.

12.

13.

14.

y=(1/3)x*+ 202 from x=0tox=3

y=x? from x=0tox=4
x=07/3) +1/@y) from y=1toy=3
x=(*/3) =y from y=1lwoy=9
x=uY49) + 1/@8) from y=1ltoy=2
x=(*/6) + 1/(2y) from y=2toy=3
y=03/4x - 3/8) +5, 1=x=8
y=/3)+2+x+1/4x+4, 0=sx=2
y=inx—x8—2 from x=1tox=2
y=§—‘l£4£ from x=1tox =3
y=%3+4—lx-, l=x=3
y=x_;+]_lﬁ’ leEI
¥
x=f Vsectt — 1dt, —w/4=y=m/4
0

X
y=] Vi —1dy, —-2=x=-1
-2

Finding Integrals for Lengths of Curves

a. Set up an integral for the length of the curve.
b. Graph the curve to see what it looks like.

¢. Use your grapher’s or computer’s integral evaluator to find 3
the curve’s length numerically. ;

15, y=2% —-1sx=2

16. y=tanx, —w/3=x=0

17. x=siny, 0=sy=m

18. x=V1—-y, -1/2=sy=1)2

1. Y+2y=2x+1 from (-1,—-1)to(7,3)

20. y=sinx —xcosx, 0=x=m

21 y=/ tantdt, 0 =x=<mu/6
0

y
22, x = / Vsectt — 1dt, —w/3=y=mu/4
o r

Theory and Examples
23. a. Find a curve with a positive derivative through the point (
whose length integral (Equation 3) is

4
= €
L ]l. 1 +4xdx.

b. How many such curves are there? Give reasons for your answef

1.1

1,



"Fmd a curve with a positive derivative through the point (0, 1)
whose length integral (Equation 4) is

/de

‘ f{-luw many such curves are there? Give reasons for your answer.
Find the length of the curve

X
y= / V cos 2t dr
0

] X"Omx—'ﬂ'/‘t

'-.". length of an astroid The graph of the equation x*° +
A = 1 is one of a family of curves called astroids (not “aster-

s”) because of their starlike appearance (see the accompanying

are). Find the length of this particular astroid by finding

fength of half the first-quadrant portion, y = (1 — x%)*2,

W/2/4 = x = 1, and multiplying by 8.

m— N =

‘Length of a line segment  Use the arc length formula (Equation 3)
1o find the length of the line segment y =3 — 2x,0 = x = 2,
Check your answer by finding the length of the segment as the
potenuse of a right triangle.

rcumference of a circle Set up an integral to find the cir-
‘cumference of a circle of radius r centered at the origin. You will
learn how to evaluate the integral in Section 8.4.

9, .‘;.912 = y(y — 3), show that
' )+ 1)2
0+ 12,

ae =2

I‘h‘z — y? = 64, show that
dt = J%(Sx’ —16) de2

L5 there a smooth (continuously differentiable) curve y = f(x)

hose length over the interval 0 < x = a is always V2a? Give
ons for your answer.

ing tangent fins to derive the length formula for curves
sume that f is smooth on [a, b] and partition the interval [a, b]
Ihe usual way. In each subinterval [x,_ ,,xk] construct the
_genr fin at the point (x;_y, f(x;-,)), as shown in the accompa-
t .'I : ng ﬁgure
5 .-..: Show that the length of the kth tangent fin over the interval
B [%-1, %] equals V(Ax)? + (f'(x-p) Ax)’.
Show that
. lim Etlcngth of kth tangent fin) = / V1 + (f'(x) dx,

0

wer. -
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which is the length L of the curve y = f(x) from a to b.

(xp—1. 1)) : with slope
— Ax; : Fea-0
i ‘|
L L > X
-1 Xi

33. Approximate the arc length of one-quarter of the unit circle
(which is 7 /2) by computing the length of the polygonal approx-
imation with n = 4 segments (see accompanying figure).

¥

r

1 ] .
0] 02505075 1

34. Distance between two points  Assume that the two points (x;, y,)
and (x,, y,) lie on the graph of the straight line y = mx + b. Use
the arc length formula (Equation 3) to find the distance between
the two points.

35, Find the arc length function for the graph of f(x) = 2x"* using
(0, 0) as the starting point. What is the length of the curve from
0,00 t0(1,2)?

36. Find the arc length function for the curve in Exercise 8, using
(0, 1/4) as the starting point. What is the length of the curve from
(0, 1/4) to (1,59/24)?

COMPUTER EXPLORATIONS
In Exercises 37—42, use a CAS to perform the following steps for the
given graph of the function over the closed interval.
a. Plot the curve together with the polygonal path approxima-
tions for n = 2, 4, 8 partition points over the interval. (See
Figure 6.22.)
b. Find the corresponding approximation to the length of the
curve by summing the lengths of the line segments.
c. Evaluate the length of the curve using an integral. Compare
your approximations for n = 2, 4, 8 with the actual length
given by the integral. How does the actual length compare

with the approximations as n increases? Explain your answer.
37 fo=Vi-4 -1=x=1
38 fo)=xP+23 0=x=s2
39. f(x) = sin (), 0=<x=V2
40. f(x) = x’cosx, 0=x=<m

41. _f(x‘)=4iz_+ll' —%Exs
2 f=xr-2 -1sxs1l



and calculate

The results agree, as they should.
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d 2 1
s=/ dmxq[1 + (@) dy=/ 2m(1 — y)V2 dy
¢ dy 0
¥ 1
Vi y -5 =2eva(1 - )
0
V2.
[ |

T P T A

6.4

ntegrals for Surface Area

' g l—B

| Set up an integral for the area of the surface generated by
' revolving the given curve about the indicated axis.

b, Graph the curve to sec what it looks like. If you can, graph
 the surface too.

Use your utility’s integral evaluator to find the surface’s area
numerically.

p=tanx, 0=x= /4, x-axis

=1, 0=x=2 xaxis

=1, 1=y=<2 y-axis

t=giny, 0 <y=am y-axis

B+ y\2 =3 from (4, 1)10(1,4); x-axis

¥ 2Vo=x, 1=y=2 yaxis

S
-ftanrdr, 0=y=m/3; y-axis
& 0
* . i X
- f\/tz-—ldr. 1 =x=1V5 xaxis
1
o | I_-Surface Area
find the lateral (side) surface area of the cone generated by
evolving the line segment y = x/2,0 < x = 4, about the

saxis. Check your answer with the geometry formula
al surface area = % X base circumference X slant height.

the lateral surface area of the cone generated by revolving
B line segment y = x/2,0 < x =< 4, about the y-axis. Check
uranswer with the geometry formula

b
aler: surface area = -;— X base circumference X slant height.

P the surface area of the cone frustum generated by revolving
e line segment y = (v/2) + (1/2),1 = x =3, about the
“8Xis. Check your result with the geometry formula

. Frustum surface area = #(r; + r;) X slant height.

.," l.hc surface area of the cone frustum generated by revolving
‘ segment y = (x/2) + (1/2),1 = x = 3, about the
= Check your result with the geometry formula

B

* Frustum surface area = r(r; + r;) X slant height.

Find the areas of the surfaces generated by revolving the curves in
Exercises 13-23 about the indicated axes. If you have a grapher, you
may want to graph these curves to see what they look like.

13. y=1'/9, 0=x=2; xaxis

4. y= Vx, 3/4 =x=15/4; x-axis

15 y'= Vx —», 05<x<15 x-axis
16. y = \/x__l, 1 =x<=25;, x-axis

17. x=y'/3, 0=sy=1; y-axis

18. x=(1/3p"? =y, 1=y=3; y-axis
19. x=2V4—y 0=y=15/4, y-axis

ST
(%)

2. x=(& +€)/2, 0=y=In2; y-axis

Y _&teY
ol . ik
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2 y=01/DF+2P2 0=<xs= \/2; y-axis (Hint: Express
ds = Vdx® + dy* in terms of dx, and evaluate the integral
S = f 27x ds with appropriate limits.)

3. x=0"4) + 1/8y), 1 =y=<2 xaxis (Hint Express
ds = Vdx® + dy? in terms of dy, and evaluate the integral
§ = [ 2aryds with appropriate limits.)

24. Write an integral for the area of the surface generated by revolv-
ing the curve y = cos x,—7/2 < x = /2, about the x-axis. In
Section 8.4 we will see how to evaluate such integrals.

25, Testing the new definition Show that the surface area of a
sphere of radius a is still 47ra® by using Equation (3) to find the
area of the surface generated by revolving the curve
y = Va* — x}, —a < x < a, about the x-axis.

26. Testing the new definition The lateral (side) surface area of a
cone of height h and base radius r should be 7r\V/r? + K, the
semiperimeter of the base times the slant height. Show that this is
still the case by finding the area of the surface generated by
revolving the line segment y = (r/h)x,0 =< x < h, about the
x-axis.

[T]27. Enameling woks Your company decided to put out a deluxe
version of a wok you designed. The plan is to coat it inside with
white enamel and outside with blue enamel. Each enamel will be
sprayed on 0.5 mm thick before baking. (See accompanying fig-
ure.) Your manufacturing department wants to know how much
enamel to have on hand for a production run of 5000 woks. What
do you tell them? (Neglect waste and unused material and give
your answer in liters. Remember that 1em’ = 1mL, so
1 L = 1000 cm?.)

y (cm)

28. Slicing bread Did you know that if you cut a spherical loaf of
bread into slices of equal width, each slice will have the same
amount of crust? To see why, suppose the semicircle
y = Vr* — x* shown here is revolved about the x-axis to gener-
ate a sphere. Let AB be an arc of the semicircle that lies above an
interval of length h on the x-axis. Show that the area swept out by

AB does not depend on the location of the interval. (It does
depend on the length of the interval.)

y
A

29. The shaded band shown here is cut from a sphere of radiug R

30. Here is a schematic drawing of the 90-ft dome used by th -5.1-

b. Express the answer to the nearest square foot.

31. Analternative derivation of the surface area formula. Ass

parallel planes k units apart. Show that the surface area of
band is 27 Rh. :

National Weather Service to house radar in Bozeman, Montan

a. How much outside surface is there to paint (not counting tk
bottom)? g

f is smooth on [a, b] and partition [a,b] in the usual wa
the kth subinterval [x,_;, x|, construct the tangent line Ig
curve at the midpoint m, = (x,—; + x)/2, as in the accomp!
ing figure. .
a, Show that uf

v Axk S
n = fim) = f'(m)—~ and n, = fim) + f(m)%

b. Show that the length L, of the tangent line segmcnt.inf..
subinterval is L, = V(Ax)? + (F'(my) Axy)?
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-__.show that the lateral surface area of the frustum of the cone (Hint: Revolve the first-quadrant portion y = (1 — 2B

" swept out by the tangent line segment as it revolves about the 0 < x < 1, about the x-axis and double your result.)

~ xeaxis is 27 f(m) V1 + (F'(m))? A

, y
'd. Show that the area of the surface generated by revolving [
iy = f(x) about the x-axis over [a,b] is It
.'.'. = (lateral surface area 8 VIt TR 23 4 23 = 1
E — + (f' 2 dx. X b ;
3 - z:, (of kth frustum ) /a WwfV1 + (&)
{ 1
b The surface of an astroid Find the area of the surface gener- =] 0 i 7

":‘ by revolving about the x-axis the portion of the astroid
523 + y*? = 1 shown in the accompanying figure.

5 Work and Fluid Forces

§

i
3

Isymbols, 17 = 1 N-m.

he joule, abbreviated J, is named after

he English physicist James Prescott

(1818-1889). The defining equa-

=

- 1 joule = (1 newton)(1 meter).

+

L

.

In everyday life, work means an activity that requires muscular or mental effort. In sci-
ence, the term refers specifically to a force acting on an object and the object’s subsequent
displacement. This section shows how to calculate work. The applications run from com-
pressing railroad car springs and emptying subterranean tanks to forcing subatomic parti-
cles to collide and lifting satellites into orbit.

Work Done by a Constant Force

When an object moves a distance d along a straight line as a result of being acted on by a
force of constant magnitude F in the direction of motion, we define the work W done by
the force on the object with the formula

W =Fd (Constant-force formula for work). (1)

From Equation (1) we see that the unit of work in any system is the unit of force mul-
tiplied by the unit of distance. In SI units (SI stands for Systéme International, or Interna-
tional System), the unit of force is a newton, the unit of distance is a meter, and the unit of
work is a newton-meter (N »m). This combination appears so often it has a special name,
the joule. In the British system, the unit of work is the foot-pound, a unit sometimes used
in applications.

EXAMPLE 1  Suppose you jack up the side of a 2000-Ib car 1.25 ft to change a tire.
The jack applies a constant vertical force of about 1000 Ib in lifting the side of the car (but
because of the mechanical advantage of the jack, the force you apply to the jack itself is
only about 30 1b). The total work performed by the jack on the caris 1000 X 1.25 = 1250
ft-1b. In SI units, the jack has applied a force of 4448 N through a distance of 0.381 m to
do 4448 X 0.381 = 1695 J of work. |

Work Done by a Variable Force Along a Line

If the force you apply varies along the way, as it will if you are stretching or compressing
a spring, the formula W = Fd has to be replaced by an integral formula that takes the
variation in F into account.

Suppose that the force performing the work acts on an object moving along a straight
line, which we take to be the x-axis. We assume that the magnitude of the force is a continu-
ous function F of the object’s position x. We want to find the work done over the interval
from x = a to x = b. We partition [a, b] in the usual way and choose an arbitrary point ¢,
in each subinterval [ x;—,, x; ]. If the subinterval is short enough, the continuous function F
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The Integral for Fluid Force Against a Vertical Flat Plate

Suppose that a plate submerged vertically in fluid of weight-density w runs from
y = atoy = b on the y-axis. Let L(y) be the length of the horizontal strip mea-
sured from left to right along the surface of the plate at level y. Then the force § 8.
exerted by the fluid against one side of the plate is

b
F=/ w* (strip depth) - L(y) dy. (7)

e 9.
EXAMPLE 6 A flat isosceles right-triangular plate with base 6 ft and height 3 ft § 3
submerged vertically, base up, 2 ft below the surface of a swimming pool. Find the fo
exerted by the water against one side of the plate. 0.
Solution We establish a coordinate system to work in by placing the origin at the plate’s ,"-:
bottom vertex and running the y-axis upward along the plate’s axis of symmetry (Figure 643}
Y@ The surface of the pool lies along the line y = 5 and the plate’s top edge along the el
Poolsutfacent| 7 0 y=s y = 3. The plate’s right-hand edge lies along the line y = x, with the upper-right vertex 2l |
o (3, 3). The length of a thin strip at level y is _ 5
Depth: =y , y=3 2
513« o L(y) = 2x = 2y. .
z —A (x,0) = (3 The depth of the strip beneath the surface is (5 — y). The force exerted by the :
’ o el against one side of the plate is therefore n
710
v b y
st
F=/ w-( p)'L(y)dy Eq. (7)
FIGURE 6.43 To find the force on one a depth '
side of the submerged plate in Example 6, - 3 !
we can use a coordinate system like the = f 62.4(5 — y)2ydy '
one here. s - Pum
3 Y
i,
= 1248 f (Sy — y?) dy B L :
0
i
5a #T
= 1248|5y* = 5| = 1684.81b. {
2 3]s
I
." ] (
Springs 4. Stretching a spring If a force of 90 N stretches a spring I
1. Spring constant It took 1800 J of work to stretch a spring from beyond its natural length, how much work does it take to stretct d
its natural length of 2 m to a length of 5 m. Find the spring’s force the spring 5 m beyond its natural length? "
constant. . 5. Subway car springs It takes a force of 21,714 Ib to compress|
2. Stretching a spring A spring has a natural length of 10 in. An coil spring assembly on a New York City Transit Authority subwa
800-1b force stretches the spring to 14 in. car from its free height of 8 in. to its fully compressed height of 31
a. Find the force constant. a, What is the assembly’s force constant? '-
b. How much work is done in stretching the spring from 10 in. b. How much work does it take to compress the assembly the
to 12in.? first half inch? the second half inch? Answer to the nearest
c. How far beyond its natural length will a 1600-1b force stretch inbi ; j
the spring? 6. Bathroom scale A bathroom scale is compressed 1/16 4
3. Stretching a rubber band A force of 2 N will stretch a rubber When & 150-Ib pérsonstaids oo it Adsuiiing That iy
band 2 c¢m (0.02 m). Assuming that Hooke’s Law applies, how far Belinves like a spring that oboys Hooke . Law, 'hm: much 68 4, g
will a 4-N force stretch the rubber band? How much work does it SN Wab: o P the Sedle ”B tn. wreigh? How S8 3 n
take to stteicl the fubber Band this: Fas? work is done compressing the scale 1 /8 in.? i
co




wr Done by a Variable Force

% Lifting a rope A mountain climber is about to haul up a 50-m
* Jength of hanging rope. How much work will it take if the rope
L weighs 0.624 N/m?

Leaky sandbag A bag of sand originally weighing 144 Ib was
ed at a constant rate. As it rose, sand also leaked out at a con-
ctant rate. The sand was half gone by the time the bag had been
ifted to 18 ft. How much work was done lifting the sand this far?
| (Neglect the weight of the bag and lifting equipment.)

) Lifting an elevator cable An electric clevator with a motor at
th whasamulﬁstrandmbleweighing4.51b/ﬁ.Whenﬁmcarisat

when the car is at the top floor. How much work does the motor do
just Jifting the cable when it takes the car from the first floor to the top?
), Force of attraction When a particle of mass m is at (x, 0), it is
stracied toward the origin with a force whose magnitude is k/x’.
{f the particle starts from restat x = b and is acted on by no other
forces, find the work done on it by the time it reaches x = a,
0<a<bh

o y bucket Assume the bucket in Example 4 is leaking. It
s with 2 gal of water (16 1b) and leaks at a constant rate. It
b finishes draining just as it reaches the top. How much work was
¥ spent lifting the water alone? (Hint: Do not include the rope and
' 'ﬁuckat. and find the proportion of water left at elevation x ft.)
,ECvnrinuarion of Exercise 11.) The workers in Example 4 and
- Exercise 11 changed to a larger bucket that held 5 gal (40 1b) of
* water, but the new bucket had an even larger leak so that it, too,
* was empty by the time it reached the top. Assuming that the water
| Jeaked out at a steady rate, how much work was done lifting the
2 water alone? (Do not include the rope and bucket.)

ater

Pumping Liquids from Containers

3, Pumping water The rectangular tank shown here, with its top
at ground level, is used to catch runoff water. Assume that the
'~ water weighs 62.4 Ib/ft’.

* 8. How much work does it take to empty the tank by pumping
the water back to ground level once the tank is full?

) *’h. If the water is pumped to ground level with a (5 J11)-
" horsepower (hp) motor (work output 250 fi-Ib/sec), how long

L ;
~ . will it take to empty the full tank (to the nearest minute)?
it. Show that the pump in part (b) will lower the water level
| m . 10 fi (halfway) during the first 25 min of pumping.

1 ﬂ- The weight of water What are the answers to parts (a) and
 (b)in a location where water weighs 62.26 1b/f%7 62.59 1b/ft*?

in o
zale
loes
uch

:'1.' Ellnplying a cistern The rectangular cistern (storage tank for
%\ rainwater) shown has its top 10 ft below ground level. The cis-
tern, currently full, is to be emptied for inspection by pumping its
contents to eround level.

b first floor, 180 ft of cable are paid out, and effectively O ft are out -

#
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a. How much work will it take to empty the cistern?

b. How long will it take a 1/2-hp pump, rated at 275 ft-1b / sec,
to pump the tank dry?

¢. How long will it take the pump in part (b) to empty the tank
halfway? (It will be less than half the time required to empty
the tank completely.)

d. The weight of water What are the answers (0 parts (a)
through (c) in a location where water weighs 62.26 1b/ft’?
62.59 Ib/ft*?

Ground level

Y

15. Pumping oil How much work would it take to pump oil from
the tank in Example 5 to the level of the top of the tank if the tank
were completely full?

16. Pumping a half-full tank Suppose that, instead of being full,
the tank in Example 5 is only half full. How much work does it
take to pump the remaining oil to a level 4 ft above the top of
the tank?

17. Emptying a tank A vertical right-circular cylindrical tank
measures 30 ft high and 20 ft in diameter. It is full of kerosene
weighing 51.2 Ib/ft*. How much work does it take to pump the
kerosene to the level of the top of the tank?

18. a. Pumping milk Suppose that the conical container in Exam-
ple 5 contains milk (weighing 64.5 Ib/ ft*) instead of olive oil.
How much work will it take to pump the contents to the rim?
b. Pumping oil How much work will it take to pump the oil
in Example 5 to a level 3 ft above the cone’s rim?

19. The graph of y = x? on 0 = x = 2 is revolved about the y-axis
to form a tank that is then filled with salt water from the Dead Sea
(weighing approximately 73 1b/ft3). How much work does it take
to pump all of the water to the top of the tank?

20. A right-circular cylindrical tank of height 10 ft and radius 5 ft is
lying horizontally and is full of diesel fuel weighing 53 Ib/ft,
How much work is required to pump all of the fuel to a point 15 ft
above the top of the tank?

21. Emptying a water reservoir We model pumping from spheri-
cal containers the way we do from other containers, with the axis
of integration along the vertical axis of the sphere. Use the figure
here to find how much work it takes to empty a full hemispherical
water reservoir of radius 5 m by pumping the water to a height of
4 m above the top of the reservoir. Water weighs 9800 N /o,




402  Chapter 6: Applications of Definite Integrals

22. You are in charge of the evacuation and repair of the storage tank
shown here. The tank is a hemisphere of radius 10 ft and is full of
benzene weighing 56 1b/f. A firm you contacted says it can
empty the tank for 1/2¢ per foot-pound of work. Find the work
required to empty the tank by pumping the benzene to an outlet
2 ft above the top of the tank. If you have $5000 budgeted for the
job, can you afford to hire the firm?

Work and Kinetic Energy
23. Kinetic energy If a variable force of magnitude F(x) moves an
object of mass m along the x-axis from x; 0 X, the object’s
velocity v can be written as dx /dt (where ¢ represents time). Use
Newton’s second law of motion F = m(du/dr) and the Chain Rule
dv _ dvds _ dv

dt ~ dxdi Vdx
to show that the net work done by the force in moving the object
from x; to x; is

2 i ey 1
W= /1 F(x)dx = Emvzz - imvlz,

where v, and v, are the object's velocities at x; and x,. In phys-
ics, the expression (1/ 2ymv? is called the kinetic energy of an
object of mass m moving with velocity v. Therefore, the work
done by the force equals the change in the object’s kinetic energy,
and we can find the work by calculating this change.

In Exercises 24-28, use the result of Exercise 23.

24. Tennis A 2-0z tennis ball was served at 160 ft/sec (about
109 mph). How much work was done on the ball to make it go
this fast? (To find the ball's mass from its weight, express the
weight in pounds and divide by 32 ft/sec?, the acceleration of
gravity.)

25. Baseball How many foot-pounds of work does it take to throw
a baseball 90 mph? A baseball weighs 5 0z, or 0.3125 Ib.

26. Golf A 1.6-0z golf ball is driven off the tee at a speed of 280 ft/sec
(about 191 mph). How many foot-pounds of work are done on the
ball getting it into the air?

27. On June 11, 2004, in a tennis match between Andy Roddick and
Paradom Srichaphan at the Stella Artois tournament in London,
England, Roddick hit a serve measured at 153 mi/h. How much
work was required by Andy to serve a 2-oz tennis ball at that speed?

28, Softball How much work has to be performed on a 6.5-0z soft-
ball to pitch it 132 ft /sec (90 mph)?

29, Drinking a milkshake The truncated conical container shown
here is full of strawberry milkshake that weighs 4/9 oz/in’. As
you can see, the container is 7 in. deep, 2.5 in. across at the base,
and 3.5 in. across at the top (a standard size at Brigham’s in
Boston). The straw sticks up an inch above the top. About how

. Water tower Your town has decided to drill a well to incre;

31. Putting a satellite in orbit The strength of Earth’s g

much work does it take to suck up the milkshake through iy
straw (neglecting friction)? Answer in inch-ounces. .
/]

Dimensions in inches 18

1

its water supply. As the town engineer, you have determined th
a water tower will be necessary to provide the pressure needed fg
distribution, and you have designed the system shown here. i
water is to be pumped from a 300-ft well through a vertical i
pipe into the base of a cylindrical tank 20 ft in diameter and 25|
high. The base of the tank will be 60 ft above ground. The
is @ 3-hp pump, rated at 1650 ft-1b /sec. To the nearest hour, hf
long will it take to fill the tank the first time? (Include the timé
takes to fill the pipe.) Assume that water weighs 62.4 Ib/ft’. E

Submersible pump 35

NOT TO SCALE

tional field varies with the distance r from Earth’s center,
magnitude of the gravitational force experienced by a satelilig
mass m during and after launch is '
mMG

F(r) = ——.

=" .

Here, M = 5.975 X 10* kg is Earth’s mass, G = 6.6 )
10~ N - m? kg2 is the universal gravitational constant, and §
measured in meters. The work it takes to lift a 1000-kg sate
from Earth’s surface to a circular orbit 35,780 km above Eaf
center is therefore given by the integral e

35,780,000 ‘
Work =/ lomfﬁdr joules.
6,370,000 r

Evaluate the integral. The lower limit of integration is Eaf
radius in meters at the launch site. (This calculation does ot
into account energy spent lifting the launch vehicle or @

spent bringing the satellite to orbit velocity.)



Vthe B 32 Forcing electrons together Two electrons r meters apart repel
, - each other with a force of

29
k F= Z%
§

" a. Suppose one electron is held fixed at the point (1, 0) on the
x-axis (units in meters). How much work does it take to move
a second electron along the x-axis from the point (-1, 0) to
the origin?

newtons.

_' * b. Suppose an electron is held fixed at each of the points (—1, 0)

tron along the x-axis from (5, 0) to (3, 0)?

iFinding Fluid Forces
33, Triangular plate Calculate the fluid force on one side of the

| that k _ plate in Example 6 using the coordinate system shown here.
-y

dfor y ()
'rhc Fs
4-in, - /-
5f . . 2
yump \ Surface of pool |~ x(f)
how i | 0 ,
meil 5 Depth |y J =2
k" (x,y)
=5
s
//

‘Triangular plate Calculate the fluid force on one side of the
| plate in Example 6 using the coordinate system shown here.

b ¥ (ft)
' Pool surface [aty = 2

1

1 | ﬂ
3 0 e
=3
wita: & cRectangulnr plate In a pool filled with water to a depth of
d the - 10 ft, calculate the fluid force on one side of a 3 ft by 4 ft rectan-

. gular plate if the plate rests vertically at the bottom of the pool
4, on its 4-ft edge. b. on its 3-ft edge.

:Semlnircular plate Calculate the fluid force on one side of a
. semicircular plate of radius 5 ft that rests vertically on its diame-

ite of _

WX

J * ter at the bottom of a pool filled with water to a depth of 6 ft.
i r.is ( i y
ellite 1
wth's Surface of water |6
5

ath's A
. take
1ergy

L Triangular plate The isosceles triangular plate shown here is
Submerged vertically 1 ft below the surface of a freshwater lake.

Find the fluid force against one face of the plate.

and (1, 0). How much work does it take to move a third elec-
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b. What would be the fluid force on one side of the plate if the
waler were seawater instead of freshwater?
Surface level

fe—a fi—| 1ft
A B

38. Rotated triangular plate The plate in Exercise 37 is revolved
180° about line AB so that part of the plate sticks out of the lake,

as shown here. What force does the water exert on one face of the
plate now?

39. New England Aquarium The viewing portion of the rectangular
glass window in a typical fish tank at the New England Aquarium in
Boston is 63 in. wide and runs from 0.5 in. below the water’s surface
to 33.5 in. below the surface. Find the fluid force against this portion
of the window. The weight-density of seawater is 64 Ib/ft*. (In case
you were wondering, the glass is 3/4 in. thick and the tank walls
extend 4 in. above the water to keep the fish from jumping out.)

40. Semicircular plate A semicircular plate 2 ft in diameter sticks

straight down into freshwater with the diameter along the surface.
Find the force exerted by the water on one side of the plate.

41. Tilted plate Calculate the fluid force on one side of a 5 ft by
5 ft square plate if the plate is at the bottom of a pool filled with
water to a depth of 8 ft and

a. lying flat on its 5 ft by 5 ft face.

b. resting vertically on a 5-ft edge.

c. resting on a 5-ft edge and tilted at 45 to the bottom of the pool.
42. Tilted plate Calculate the fluid force on one side of a right-

triangular plate with edges 3 fi, 4 ft, and 5 ft if the plate sits at the

bottom of a pool filled with water to a depth of 6 ft on its 3-ft

edge and tilted at 60° to the bottom of the pool.

43. The cubical metal tank shown here has a parabolic gate held in
place by bolts and designed to withstand a fluid force of 160 1b
without rupturing. The liquid you plan to store has a weight-
density of 50 Ib/ft’.

a. What is the fluid force on the gate when the liquid is 2 ft deep?
b. What is the maximum height to which the container can be
filled without exceeding the gate's design limitation?

4 fit

y(ft)

-1,1) (1, 1)

2

y=x
1 | — ft
-1 0 i
Parabolic gate Enlarged view of
parabolic gate
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44. The end plates of the trough shown here were designed to with- compresses a spring. The spring constant is k = 100 Ib/ft. If t - ! N4
stand a fluid force of 6667 Ib. How many cubic feet of water can end of the tank moves 5 ft against the spring, the water will drajy
the tank hold without exceeding this limitation? Round down to out of a safety hole in the bottom at the rate of 5 ft3 /min. Will the! ,
the nearest cubic foot. What is the value of 47 movable end reach the hole before the tank overflows? ' 4
y (ft) Movable end \\iatcr in — 28
(-4,10) 1 (4,10) : p .
Vi .
) | v
| rorssmararrss
0,h ; ?L
©.5 sy Drain 5 f—> Movable i
2 hole end A =
Side view : v
A 1 (M) 0 ft .
Dimensional [l £V
End view of trough view of trough iy
. e
45. A vertical rectangular plate a units long by b units wide is sub- . -
merged in a fluid of weight-density w with its long edges parallel h | '1
to the fluid's surface. Find the average value of the pressure along hole e
rtical dimension of the plate. Explain your answer. . . : g
T P Ry 48. Watering trough The vertical ends of a watering trough aj i
46. (Continuation of Exercise 45.) Show that the force exerted by the squares 3 ft on a side. e B ‘ :
fluid on one side of the plate is the average value of the pressure _ . _ . e
(found in Exercise 45) ﬁl:m e iceaof t:c plate v a. Find the fluid force against the ends when the trough is fully s+ |
' . i -
47. Wat into the tank shown here at the rate of 4 ft*/min. The b. How many inches do you have to lower the water level in th 3: e
B O s it g trough to reduce the fluid force by 25%? i PO

tank’s cross-sections are 4-ft-diameter semicircles. One end of
the tank is movable, but moving it to increase the volume

6.6 Moments and Centers of Mass

Many structures and mechanical systems behave as if their masses were concentrated af
single point, called the center of mass (Figure 6.44). It is important to know how to local
this point, and doing so is basically a mathematical enterprise. Here we consider mas
distributed along a line or region in the plane. Masses distributed across a region or cun
in three-dimensional space are treated in Chapters 15 and 16. ;

Masses Along a Line

We develop our mathematical model in stages. The first stage is to imagine masses My, M
and m; on a rigid x-axis supported by a fulcrum at the origin. b

X 0 X2 X3
* & *+—> X
my ‘ ms my
Fulcrum
at.origin

The resulting system might balance, or it might not, depending on how large the mass
are and how they are arranged along the x-axis. %,
Each mass m; exerts a downward force mg (the weight of m,) equal to the magnitud
the mass times the acceleration due to gravity. Note that gravitational acceleration is downwa
hence negative. Each of these forces has a tendency to turn the x-axis about the origin, the W
a child turns a seesaw. This turning effect, called a torque, is measured by multiplying the Iof€
myg by the signed distance x; from the point of application to the origin. By conventios
positive torque induces a counterclockwise turn. Masses to the left of the origin exert pos "
(counterclockwise) torque. Masses to the right of the origin exert negative (clockwise) torqu
The sum of the torques measures the tendency of a system to rotate about the orig
This sum is called the system torque. il

=

e

System torque = m;gx; + mygx; + mygx; Y
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THEOREM 2—Pappus’s Theorem for Surface Areas If an arc of a smooth
plane curve is revolved once about a line in the plane that does not cut through
the arc’s interior, then the area of the surface generated by the arc equals the

length L of the arc times the distance traveled by the arc's centroid during the
revolution. If p is the distance from the axis of revolution to the centroid, then

S = 2mpL. (11)

The proof we give assumes that we can model the axis of revolution as the x-axis and the
arc as the graph of a continuously differentiable function of x.

Proof We draw the axis of revolution as the x-axis with the arc extending from x = a
to x = b in the first quadrant (Figure 6.59). The area of the surface generated by the arc is

x=b x=b
§= f 2wy ds = 21’1’/ y ds. (12)
X X

=g =q

The y-coordinate of the arc's centroid is

x=hb x=h
f y ds / yds
x=a _ Jax=a
x=b = L :
/ ds
X=a

x=h
/ yds = yL.

Substituting yL for the last integral in Equation (12) gives § = 2wyL. With p equal to ¥,
we have § = 27pL. |

L= f ds is the arc's
length and v = y.

S

Hence

EXAMPLE 8  Use Pappus’s area theorem to find the surface area of the torus in Example 6.

Solution From Figure 6.57, the surface of the torus is generated by revolving a circle of
radius a about the z-axis, and b = a is the distance from the centroid to the axis of revolu-
tion. The arc length of the smooth curve generating this surface of revolution is the cir-
cumference of the circle, so L = 2a. Substituting these values into Equation (11), we
find the surface area of the torus to be

S = 2w(b)(2ma) = 47%ba. W

) Plates with Constant Density

BISity § covering the given region.

ises 1-14, find the center of mass of a thin plate of constant

“Th region bounded by the parabola y = x? and the line y = 4
he region bounded by the parabola y = 25 — x? and the x-axis

3. The region bounded by the parabola y = x — x* and the line
y =%
4. The region enclosed by the parabolas y = x> — 3and y = —2x

5. The region bounded by the y-axis and the curve x = y — ¥,
OD=y=1
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6. The region bounded by the parabola x = y* — y and the line
y=x .

7. The region bounded by the x-axis and the curve y = cosx,
—11'/ 2=x=n /’ 2

8. The region between the curve y = sec’x, =m/d < x = 7/4
and the x-axis

[T]9. The region between the curve y = 1/x and the x-axis from x = 1
to x = 2. Give the coordinates to two decimal places.

10. a. The region cut from the first quadrant by the circle x* + y* = 9
b. The region bounded by the x-axis and the semicircle
y=Vo-2
Compare your answer in part (b) with the answer in part (a).

11. The region in the first and fourth quadrants enclosed by the
curves y = 1/(1 + x%) and y = —1/(1 + x?) and by the lines
x=0andx =1

12. The region bounded by the parabolas y = 2x* — 4x and

y=%—x*
13. The region between the curve y = 1/Vx and the x-axis from
=lx=16

14. The region bounded above by the curve y = 1 /%3, below by the
curve y = ~1/x°, and on the left and right by the lines x = 1
and x = a > 1. Also, find lim, . X.

Thin Plates with Varying Density

15. Find the center of mass of a thin plate covering the region
between the x-axis and the curve y = 2/x%, 1 = x = 2, if the
plate’s density at the point (x, y) is 8(x) = x*.

16. Find the center of mass of a thin plate covering the region
bounded below by the parabola y = x> and above by the line
y = x if the plate’s density at the point (x, y) is 8(x) =

17. The region bounded by the curves y = i4/\/} and the lines
x = 1 and x = 4 is revolved about the y-axis to generate a solid.
a. Find the volume of the solid.
b. Find the center of mass of a thin plate covering the region if

the plate’s density at the point (x, y) is 8(x) = 1/x.

¢. Sketch the plate and show the center of mass in your sketch.

18. The region between the curve y = 2/x and the x-axis from x = 1
to x = 4 is revolved about the x-axis to generate a solid.
a. Find the volume of the solid.

b. Find the center of mass of a thin plate covering the region if
the plate’s density at the point (x, y) is 8(x) =

¢. Sketch the plate and show the center of mass in your sketch.

Centroids of Triangles

19. The centroid of a triangle lies at the intersection of the trian-
gle’s medians  You may recall that the point inside a triangle
that lies one-third of the way from each side toward the opposite
vertex is the point where the triangle’s three medians intersect.
Show that the centroid lies at the intersection of the medians by
showing that it too lies one-third of the way from each side
toward the opposite vertex. To do so, take the following steps.

i) Stand one side of the triangle on the x-axis as in part (b) of
the accompanying figure. Express dm in terms of L and dy.

ii) Use similar triangles to show that L = (b/h)(h — y). Sub
stitute this expression for L in your formula for dm.

iii) Show that y = h/3.
iv) Extend the argument to the other sides.

>t

dy
h _l'_ & + . .Qf k7
T-L— | )
l 1
0, 1
e
(a) (b
Use the result in Exercise 19 to find the centroids of the triang]
whose vertices appear in Exercises 20-24. Assume a, b > 0.
20. (~1,0),(1,0), (0,3) 21. (0,0), (1,0, (0, 1) 4
22. (0, 0), (a, 0), (0, a) 23. (0, 0), (a, 0), (0, b)
24. (0,0), (a,0), (a/2.b) S The
‘i 35.'1
Thin Wires 1
25. Constant density Find the moment about the x-axis of a 5
of constant density that lies along the curve y = Vx from x %1
tox =2. : i
26. Constant density Find the moment about the x-axis of a ¥ ¢
of constant density that lies along the curve y = x* from r PR
tox = 1. e ; (
27. Variable density Suppose that the density of the wire in E ' 3& t
ple 4is 8 = ksin 6 (k constant). Find the center of mass. Rt
28. Variable density Suppose that the density of the wire in Exinsgy =~
ple4is 8 = 1 + k|cog 8| (k constant). Find the center of masf #uRe
; :
Plates Bounded by Two Curves
In Exercises 29-32, find the centroid of the thin plate bounded by ,
graphs of the given functions. Use Equations (6) and (7) w1th :
and M = area of the region covered by the plate. - 11
29. g(x) =x* and f(x) =x+6 g
30. g) =x2(x+1), fx)=2, and x=0 Lt
3. gx) =x(x—1) and f(x) =* il
32 g0 =0, f@=2+sinx x=0, and x=2m byt
(Hinr:/xsinxdx=sinx—xcosx+ G .lc
I
4
Theory and Examples
Verify the statements and formulas in Exercises 33 and 34. 4 'Z
33. The coordinates of the centroid of a differentiable plane ¢ i ‘L'!. [_
_ f xds f yds b
x= i ]




pordinate of the centroid of the parabolic segment shown here
y = (3/5)a.

¥
: \ J Jy=§%
gles ey =%a
: 0 ‘ .

=g

L
-

2 Theorems of Pappus

5, The square region with vertices (0, 2), (2, 0), (4, 2), and (2, 4) is
! revolved about the x-axis to generate a solid. Find the volume and
* surface area of the solid.

..,
6. Use a theorem of Pappus to find the volume generated by revolv-
“ing about the line x = 5 the triangular region bounded by the
¥ coordinate axes and the line 2x + y = 6 (see Exercise 19).
7, Find the volume of the torus generated by revolving the circle
8 (x — 2)* + y* = 1 about the y-axis.
se the theorems of Pappus to find the lateral surface area and the
- Volume of a right-circular cone.

4. Whatever the value of p > 0 in the equation y = x?/(4p), the .
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39, Use Pappus’s Theorem for surface arca and the fact that the sur-
face area of a sphere of radius a is 4ma? to find the centroid of the
semicircle y = Va? — x%

40. As found in Exercise 39, the centroid of the semicircle
y = Va? — x* lies at the point (0, 2a/m). Find the area of the
surface swept out by revolving the semicircle about the line y = a.

41. The area of the region R enclosed by the semiellipse
y = (b/a)Va* — x* and the x-axis is (1/2)mab, and the volume
of the ellipsoid generated by revolving R about the x-axis is
(4/3)mab®. Find the centroid of R. Notice that the location is
independent of a.

42. As found in Example 7, the centroid of the region enclosed by the
x-axis and the semicircle y = Via> — x* lies at the point
(0, 4a/37). Find the volume of the solid generated by revolving
this region about the line y = —a.

43. The region of Exercise 42 is revolved about the line y = x — a
to generate a solid. Find the volume of the solid.

44. As found in Exercise 39, the centroid of the semicircle
y = Va? — x? lies at the point (0, 2a/). Find the area of the
surface generated by revolving the semicircle about the line
y=x-a

In Exercises 45 and 46, use a theorem of Pappus to find the centroid
of the given triangle. Use the fact that the volume of a cone of radius r
and height his V = § mrh.

y 46. y (a,¢)
(0, b)

(a, b)

0,0 @0 = ©0)]

W do you define and calculate the volumes of solids by the
ethod of slicing? Give an example.

How are the disk and washer methods for calculating volumes
‘Gerived from the method of slicing? Give examples of volume
ations by these methods.

% Describe the method of cylindrical shells. Give an example.

_. do you find the length of the graph of a smooth function
4 a closed interval? Give an example. What about functions
‘that do not have continuous first derivatives?

#10w do you define and calculate the area of the surface swept out
"y reyolving the graph of a smooth function y = f(x), @ = x = b,
‘bout the x-axis? Give an example.

- T
-
1y

Questions to Guide Your Review

6. How do you define and calculate the work done by a variable
force directed along a portion of the x-axis? How do you calculate
the work it takes to pump a liquid from a tank? Give examples.

7. How do you calculate the force exerted by a liquid against a por-
tion of a flat vertical wall? Give an example.

8. What is a center of mass? a centroid?

9. How do you locate the center of mass of a thin flat plate of mate-
rial? Give an example.

10. How do you locate the center of mass of a thin plate bounded by
twocurves y = f(x)andy = g(x) overa = x =< b?



