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gyvaluating Irnproper Integrals
'_ integrals in Exercises 1-34 converge. Evaluate the integrals with-
. at using tables.
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ting for Convergence
8 Exercises 35-64, use integration, the Direct Comparison Test, or
Limit Comparison Test to test the integrals for convergence. If
e than one method applies, use whatever method you prefer.
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Theory and Examples
65. Find the values of p for which each integral converges.

dx " ¥ dx
, X(In x)? © J, x(Inx)?

66. f :, f(x) dx may not equal m f _a; f(x)dx Show that

2xdx
o Xt +1
diverges and hence that
¥ 2xdx
o F X
diverges. Then show that
b
2cdx _
lu‘n = 0.

Exercises 67-70 are about the infinite region in the first quadrant
between the curve y = ¢ * and the x-axis.

67. Find the area of the region.
68. Find the centroid of the region.

69. Find the volume of the solid generated by revolving the region
about the y-axis.
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70. Find the volume of the solid generated by revolving the region
about the x-axis,

71. Find the area of the region that lies between the curves y = secx
andy = tanx fromx = O to x = /2.

72. The region in Exercise 71 is revolved about the x-axis to generate
a solid.
a. Find the volume of the solid.
b. Show that the inner and outer surfaces of the solid have infi-

nite area.

73. Evaluate the integrals.
a f l dt
" Jo Vi1 + )

o0
dx
74. Evaluate / —————
3 xVxi—-9

75. Estimating the value of a convergent improper integral whose
domain is infinite

a. Show that

h/w dt
"o Vi + 1)

o0

e 1

/ e dx = ie“’ < 0.000042,
3

and hence that f;a €™ dx < 0.000042. Explain why this

means that f :n e dx can be replaced by foa e dx without
introducing an error of magnitude greater than 0.000042,

b. Evaluate [, ¢ dx numerically.
76. The infinite paint can or Gabriel’s horn As Example 3 shows,

the integral lm(a[x/x] diverges. This means that the integral

el + =
./: T 1 x“dr'

which measures the surface area of the solid of revolution traced
out by revolving the curve y = 1/x, 1 = x, about the x-axis,
diverges also. By comparing the two integrals, we see that, for
every finite value b > 1,

¥ 4 1 ¥
/2«; 1+Fdx_>21r/ Lae
1 |

However, the integral

for the volume of the solid converges.
a. Calculate it.

b. This solid of revolution is sometimes described as a can that
does not hold enough paint to cover its own interior. Think

about that for a moment. It is common sense that a finite

amount of paint cannot cover an infinite surface. But if we
the horn with paint (a finite amount), then we will have co
ered an infinite surface. Explain the apparent contradiction,

77. Sine-integral function The integral

Si(2) =/ﬂ,“~idx.
0

called the sine-integral function, has important application
optics.

a. Plot the integrand (sin #)/¢ for r > 0. Is the sine-integral

function everywhere increasing or decreasing? Do you thig

Si (x) = 0 for x > 07 Check your answers by graphing th

function Si (x) for 0 = x = 25.

b. Explore the convergence of

o0 -
/ Su:—rdr.
0

If it converges, what is its value?
78, Error function The function

X 28__'1
erf(x) = .[o ﬁ dt,
called the error function, has important applications in prob
ity and statistics.
a. Plot the error function for 0 < x < 25.
b. Explore the convergence of

o Vrm

1f it converges, what appears to be its value? You will s
how to confirm your estimate in Section 15.4, Exercisedl

79. Normal probability distribution The function

i

f&x) =

oV 2T

is called the normal probability density function with me
standard deviation o. The number p tells where the dis
is centered, and o measures the “scatter”” around the mean: (Se
Section 8.9.) g
From the theory of probability, it is known that

/ feo)dx = 1. g

In what follows, let p = Oand o = 1.

a. Draw the graph of f. Find the intervals on which f is incred
ing, the intervals on which f is decreasing, and any local -
extreme values and where they occur.

b. Evaluate
/ flx) dx

forn = 1, 2, and 3.



8.9 Probability 515

. ¢ Give a convincing argument that COMPUTER EXPLORATIONS
s fill % o0 In Exercises 81-84, use a CAS to explore the integrals for various
_ / f(x)dx = 1. values of p (include noninteger values). For what values of p does the
1. s § | =0 integral converge? What is the value of the integral when it does con-
W (i Show that 0 < f() < e forx > Landforp > 1, VTS Flotthe ntegrand for various vl oty
: > 81. /x’lnxdx 82. f P In x dx
e2dx—0 as b—x) 0 4
s BB, Show that if f(x) is integrable on every interval of real numbers 83. f xP In x dx 84. / x1n |x| dx
. | and a and b are real numbers with @ < b, then 0 ~00
" . [° f(x)dxand [ f(x)dx both converge if and only if Usea CZ?S to evaluate the integrals. .,
3 . m g
nk ? f)dxand [, f(x)dx both converge. 85, sin < dx 86. xsin i dx
e £ : 0 - 0 x

e .
13

b [ fwdc+ [P fwdx= [Lf@de+ [, f)dx

when the integrals involved converge.

o .9 probabiity

i

abil- ©

The outcome of some events, such as a heavy rock falling from a great height, can be mod-
eled so that we can predict with high accuracy what will happen. On the other hand, many
events have more than one possible outcome and which one of them will occur is uncer-
tain. If we toss a coin, a head or a tail will result with each outcome being equally likely,
but we do not know in advance which one it will be. If we randomly select and then weigh
a person from a large population, there are many possible weights the person might have,
and it is not certain whether the weight will be between 180 and 190 Ib. We are told it is
highly likely, but not known for sure, that an earthquake of magnitude 6.0 or greater on the
Richter scale will occur near a major population area in California within the next one
hundred years. Events having more than one possible outcome are probabilistic in nature,
and when modeling them we assign a probability to the likelihood that a particular out-
come may occur. In this section we show how calculus plays a central role in making pre-
dictions with probabilistic models.

Random Variables

We begin our discussion with some familiar examples of uncertain events for which the
collection of all possible outcomes is finite.

EXAMPLE 1

(a) If we toss a coin once, there are two possible outcomes {H, T}, where H represents
the coin landing head face up and T a tail landing face up. If we toss a coin three times,
there are eight possible outcomes, taking into account the order in which a head or tail
occurs. The set of outcomes is { HHH, HHT, HTH, THH, HTT, THT, TTH, TTT} .

(b) If we roll a six-sided die once, the set of possible outcomes is {1,2,3,4,5,6} repre-
senting the six faces of the die.

(c) If we select at random two cards from a 52-card deck, there are 52 possible outcomes
for the first card drawn and then 51 possibilities for the second card. Since the
order of the cards does not matter, there are (52+51)/2 = 1,326 possible outcomes
altogether. |

It is customary to refer to the set of all possible outcomes as the sample space for an
event. With an uncertain event we are usually interested in which outcomes, if any, are
more likely to occur than others, and to how large an extent. In tossing a coin three times,
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Cartesian from Parametric Equations

ses 1-18 give parametric equations and parameter intervals for
s motion of a particle in the xy-plane. Identify the particle’s path by
pding a Cartesian equation for it. Graph the Cartesian equation. (The
s will vary with the equation used.) Indicate the portion of the
traced by the particle and the direction of motion.

Px=3t y=92 -o0<t<®

: ..I.—_- -VG, y=t t=0

(=2—5 y=4-7 —-00<t<00

=3-31 y=2t, 0=s1=1

= Ccos2f, y=sin2r, 0sts7

i =cos(mr —1), y=sin(m —1), O0=t=n

'*= d4cost, y=2sint, 0=1=2m

L x=4sinr, y=5cost, 0=<1<2m

¥y \.=sinf. y = cos 2, -—%5:572—]-

-=l+sinz. y=cost—2, 0=1=m7

Lx=r y=1£f-2" -o0o<i<m

 x = ﬁ y= H -1<t<1

! r.y=\/iTr3, -1l=r=20

k= Vi+1, y=Vi, 120

i =sec’s — 1, y=tant, —w/2<t<m/2

x=-sect, y=tant, —w/2<t<7/2

x=—coshs, y=sinhs, —00 <1< 00

fix=2sinhs, y=2cosht, —00<t<00

inding Parametric Equations

¥, Find parametric equations and a parameter interval for the motion

: " a particle that starts at (a, 0) and traces the circle x> + y? = 4?
a. once clockwise.

D. once counterclockwise.
twice clockwise.
. twice counterclockwise.

= are many ways to do these, so your answers may not be
e same as the ones in the back of the book.)

d parametric equations and a parameter interval for the motion
Ol a particle that starts at (a,0) and traces the ellipse
/@) + (2/p) = 1
L once clockwise. b. once counterclockwise.
twice clockwise. d. twice counterclockwise.
S in Exercise 19, there are many correct answers.)
=Kercises 21-26, find a parametrization for the curve,

fie line segment with endpoints (—1,—3) and (4, 1)

Ahe line segment with endpoints (—1, 3) and (3, —2)
Hhe lower half of the parabola x — 1 = 2

Ahe left half of the parabola y = x> + 2x

A€ ray (half line) with initial point (2, 3) that passes through the
Lpoint (—1, 1)

26. the ray (half line) with initial point (—1, 2) that passes through the
point (0, 0)

27, Find parametric equations and a parameter interval for the motion

of a particle starting at the point (2, 0) and tracing the top half of
the circle x* + y2 = 4 four times.

28. Find parametric equations and a parameter interval for the motion
of a particle that moves along the graph of y = x? in the follow-
ing way: Beginning at (0, 0) it moves to (3, 9), and then travels
back and forth from (3, 9) to (=3, 9) infinitely many times.

29. Find parametric equations for the semicircle
2ty=a, y>0
using as parameter the slope r = dy/dx of the tangent to the
curve at (x, y).
30. Find parametric equations for the circle
24y =
using as parameter the arc length s measured counterclockwise
from the point (a, 0) to the point (x, y).
31. Find a parametrization for the line segment joining points (0, 2)

and (4, 0) using the angle # in the accompanying figure as the
parameter.

24

0 4

32. Find a parametrization for the curve y = \V/x with terminal point
(0, 0) using the angle # in the accompanying figure as the parameter.

0

33. Find a parametrization for the circle (x — 2)* + y? = | starting
at (1, 0) and moving clockwise once around the circle, using the
central angle 6 in the accompanying figure as the parameter.

¥
A

(

1k X, ¥)
( /'\\
A )

0 2
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34. Find a parametrization for the circle x* + y* = 1 starting at (1, 0)
and moving counterclockwise to the terminal point (0, 1), using
the angle 6 in the accompanying figure as the parameter.

35. The witch of Maria Agnesi The bell-shaped witch of Maria
Agnesi can be constructed in the following way. Start with a cir-
cle of radius 1, centered at the point (0, 1), as shown in the
accompanying figure. Choose a point A on the line y = 2 and
connect it to the origin with a line segment. Call the point where
the segment crosses the circle B. Let P be the point where the
vertical line through A crosses the horizontal line through B. The
witch is the curve traced by P as A moves along the line y = 2.
Find parametric equations and a parameter interval for the witch
by expressing the coordinates of P in terms of 1, the radian mea-
sure of the angle that segment O A makes with the positive x-axis.
The following equalities (which you may assume) will help.

a. x =AQ b. y =2 — ABsint
c. AB:0OA = (AQ)

P(x, y)

|
L=}

(0, 1)

o

36. Hypocycloid When a circle rolls on the inside of a fixed circle,
any point P on the circumference of the rnllmg circle describes a
hypocycloid. Let the fixed circle be x* + y? 2 let the radius
of the rolling circle be b, and let the initial position of the tracing
point P be A(a,0). Find parametric equations for the hypocy-
cloid, using as the parameter the angle 8 from the positive x-axis
to the line joining the circles’ centers. In particular, if b = a/4,
as in the accompanying figure, show that the hypocycloid is the
astroid

x=acos’h, y=asin’6.

\ .

37. As the point N moves along the line y = a in the accomps '.:.I

figure, P moves in such a way that OP = MN. Find param 4
equations for the coordinates of P as functions of the angle
the line ON makes with the positive y-axis. i
A(0, @) -
N
M
t
P -
B o2
0
38. Trochoids A wheel of radius a rolls along a horizontal s :
line without slipping. Find parametric equations for the curve trag
out by a point P on a spoke of the wheel b units from its center. Ag
parameter, use the angle 6 through which the wheel tums. The
curve is called a rrochoid, which is a cycloid when b = a. g
Distance Using Parametric Equations E E,
39. Find the point on the parabola x =,y = ?,—0co <t ;___
closest to the point (2, 1/2). (Hint: Minimize the square of {
distance as a function of t.)
40. Find the point on the ellipse x = 2cost,y = sinf, 0=
closest to the point (3/4,0). (Hint: Minimize the square af
distance as a function of 1.)
|T| GRAPHER EXPLORATIONS A
If you have a parametric equation grapher, graph the equatio
the given intervals in Exercises 41-48.
41. Ellipse x = 4cost, y = 2sint, over
a. 0=t=2nw .
b.0st=<m i3
¢ —mw/2=t=7/[2
42. Hyperbola branch ‘x = sect (enter as 1/cos(r), y'=
(enter as sin (r) /cos (1)), over :
a —-15=t=15 {
b, =05 <1 <05 -
c. 0.1 =r=0.1
43, Parabola x=2r+3, y=#-1, -2=1=<2
44, Cycloid x =1 —sins, y=1—cost, over : 1
a. 0st=2n ki :
b. 0=t=4x¢
€. TS =3
45, Deltoid .
i
x=2cost+cos2t, y=2sint—sin2; 0st1= 21{;
What happens if you replace 2 with —2 in the equations for x aM
y? Graph the new equations and find out. a
46. A nice curve .
x=3cost+cos3t, y=3sint—sin3y 0sr=2m_ Rl
What happens if you replace 3 with —3 in the equations for.l‘ 7 :‘
T

y? Graph the new equations and find out.



ia. Epicycloid

> x = 9cost — cos 9,
Hypocycloid

x = 8cost + 2cosdt,

. ¢. Hypotrochoid
%

17

y = 9sint — sin 91,
y = 8sint — 2sin4r;

' x=cost+ Scos3t, y=6cost—Ssind; 0=1=27w

661

11.2 Calculus with Parametric Curves

48. a. x =6c¢cost + 5cos3r, y=6sinr— 5sin3g
O0=r=27

b, x =6cos2r + 5cos6r, y= 6sin2r — 5sin 0,

0=t=2m

O=st=mw

0=1s2n e. x=~6cost+ 5cos3t, y=6sin2t— 5sin3p
0=r=2mr

d. x=~6cos2t + 5cos 61, y= 6sindt — 5 sin 61,
O=st=w

.2 Calculus with Parametric Curves

1 2

x=secty=tanf,
=Lz ®
2 2

ia 11.13  The curve in Example 1
iTight-hand branch of the hyperbola

-_-1.

In this section we apply calculus to parametric curves. Specifically, we find slopes, lengths,
and areas associated with parametrized curves.

Tangents and Areas

A parametrized curve x = f(f) and y = g(r) is differentiable at  if f and g are differen-
tiable at t. At a point on a differentiable parametrized curve where y is also a differentiable
function of x, the derivatives dy/dt, dx/dt, and dy/dx are related by the Chain Rule:

D _d dx

dt  dx dt’
If dx/dt # 0, we may divide both sides of this equation by dx/dt to solve for dy/dx.

Parametric Formula for dy /dx
If all three derivatives exist and dx/dt # 0,

dy dy/dt

dx  dx/dt 1)

If parametric equations define y as a twice-differentiable function of x, we can apply
Equation (1) to the function dy/dx = y' to calculate d%y/dx? as a function of r:

d*y dy' /dt

E = % (y') = m Eq. (1) with ¥ in place of y

Parametric Formula for d% /dx*

If the equations x = f(1), y = g(f) define y as a twice-differentiable func-
tion of x, then at any point where dx/dt # 0 and y' = dy/dx,

d’y dy'/dr

dx?  dx/dt’

(2)

EXAMPLE 1

Find the tangent to the curve

m m
= tant, e e e
Y 2 2

X = sect,

at the point (\/i, 1), where t = 7 /4 (Figure 11.13).




EXAMPLE 9

Solution

E 11.18 InExample 9 we cal-
e the area of the surface of revolution
bpt out by this parametrized curve.

‘ ents to Parametrized Curves

ses 1-14, find an equation for the line tangent to the curve at
nt defined by the given value of 1. Also, find the value of d%y/dx?
10is point.

= 2cost, y=2sint, t=m/4

4% = sin 271, y = cos2m, t=-1/6
X=4sint, y=2cost, t=m/4
X =cost, y= V3cost, t=2xw/3

|=1 y=\V1 1=1/4

B =sec?r — 1, y=tant, t=-m/4
S=sect, y=tant, 1=m/6
;‘:F—\/r_-ﬁ, y“—‘\@_r, r=3
=20 +3, y=r, 1=-1
RE=1/1, y=-2+Int, 1=1
r=m/3
¥ =cost, y=1+sint, t=m/2

} 1 !

st
'=r+e', y

X =1t—sins, y=1— cost,

g t=12
1-¢€, t=0

licitly Defined Parametrizations

i _' g that the equations in Exercises 15-20 define x and y implic-
& differentiable functions x = f(¢), y = g(t), find the slope of
Blrve x = f(r), y = g(1) at the given value of 1.

oh ™
e P+22=9 2 -32=4 1=2
that ®=V5- Vi, e-1=Vi t=4

X+ 02 =24+ yWr+1+2Vy=4, t=0

@#sins + 2x =1, rsint—2r=y t=mw

o

X = cos t,

S
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11.2 Calculus with Parametric Curves

The standard parametrization of the circle of radius 1 centered at the
point (0, 1) in the xy-plane is

y=1+sint, 0=1=2m

Use this parametrization to find the area of the surface swept out by revolving the circle
about the x-axis (Figure 11.18).

We evaluate the formula

b 2 2 Eq. (5) for revolution
dx) (dy) .
s Qa7 (_ 1= at about the x-axis;
- /ﬂ Y\ \ar dt y=1l+sinr=0
n
= _/ 2m(1 + sin?) V(—sin#)? + (cos t)? dt
g |
2
= 2w (1 + sins)dt
0
2
= 211'{! - cos r} = 472 [ ]
0

i ST P, SR

19. x=P+1 y+20=X+1,
2. t=In(x—1), y=te, t=0

Area
21. Find the area under one arch of the cycloid
x=alt — sint), y=a(l — cost).
22. Find the area enclosed by the y-axis and the curve
x=t1—0 y=1+¢'.
23. Find the area enclosed by the ellipse
0=1=12nm.

x=acost, y=bsint,

3

24. Find the area under y = x* over [0, 1] using the following

parametrizations.

a x=1 y=1£ b.x=¢7, y=¢

Lengths of Curves
Find the lengths of the curves in Exercises 25-30.

25. x=cost, y=t+sint, 0=st=nmw

2. x=1, y=32/2, 0=st=<V3

27, x=1/2, y=(+ 10?3, 0=1=<4

28 x= 20+ 323, y=t+1/2, 0=t=3

29, x = Bcost + Brsint 30, x=In(secr + tanf) — sint
y = 8sint — Brcost, y=cost, 0=t=m/3
0=t=mx/2

Surface Area
Find the areas of the surfaces generated by revolving the curves in
Exercises 31-34 about the indicated axes.

31. x=cost, y=2+sint, 0=1=2m x-axis
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RN.x=@Q3)4, y= 2V, 0=1s V3 y-axis

B.ox=t+V2 y=(2/2)+ V2, —V2s1t=V2 yais

34. x = In(sect + tans) — sin¢, y = cost, 0 = t = m/3; x-axis

35. A cone frustum The line segment joining the points (0, 1) and
(2, 2) is revolved about the x-axis to generate a frustum of a cone.
Find the surface area of the frustum using the parametrization
x =2,y =1+ 1,0 =t = 1 Check your result with the geom-
etry formula: Area = w(r; + ry)(slant height).

36. A cone The line segment joining the origin to the point (A, r) is
revolved about the x-axis to generate a cone of height & and base
radius r. Find the cone’s surface area with the parametric equa-
tions x=ht, y=rt, 0 =t =1, Check your result with the
geometry formula: Area = r{slant height).

Centroids

37. Find the coordinates of the centroid of the curve

x=cost+tsint, y=sint—rcost, 0=t=m/2
38. Find the coordinates of the centroid of the curve
x=~cost, y=e'sinf, 0=t=m
39. Find the coordinates of the centroid of the curve
x=cost, y=t+sint, 0st=m.
40. Most centroid calculations for curves are done with a calculator
or computer that has an integral evaluation program. As a case in

point, find, to the nearest hundredth, the coordinates of the cen-
troid of the curve

x=0, y=3/2, 0=t=V3

Theory and Examples

41. Length is independent of parametrization To illustrate the
fact that the numbers we get for length do not depend on the way we
parametrize our curves (except for the mild restrictions preventing
doubling back mentioned earlier), calculate the length of the semi-
circle y = V1 — x* with these two different parametrizations:
a x=cos, y=sinlt, 0strsm/2
b. x =sinmt, y=cosmt, —1/2=1=1/2

42. a. Show that the Cartesian formula

for the length of the curve x = g(y), ¢ = y = d (Section 6.3,
Equation 4), is a special case of the parametric length formula

Use this result to find the length of each curve.
b. x =y 0=y=4/3

c x=%ym, 0=sy=1

43. The curve with parametric equations
x=(1+2sin@)cosh, y=(1+ 2sinf)sinh

is called a limagon and is shown in the accompanying figure. Find
the points (x, y) and the slopes of the tangent lines at these points for

a. 6=0. b. 8=7/2. c 6 =4n/3.

-

-1 1

44, The curve with parametric equations

0=t=12w

x=t y=1—-cost,

is called a sinusoid and is shown in the accompanying .-._.-‘
Find the point (x, y) where the slope of the tangent line is

| [ —

a. largest. b. smallest.

PN

0‘ 27

> X

B 83

[T] The curves in Exercises 45 and 46 are called Bowditch curvesy
Lissajous figures. In each case, find the point in the 1ntzr10rof h
first quadrant where the tangent to the curve is honmmal,._ _
find the equations of the two tangents at the origin. :

4. 46. gt

x =sint

x = sin2f
y = sin2t 1 y = sin3|

o

—

47. Cycloid
a. Find the length of one arch of the cycloid

x=a(t—sint), y=a(l —cost). I

b. Find the area of the surface generated by revolving one amh

the cycloid in part (a) about the x-axis for a = 1. e

48. Volume Find the volume swept out by revolving the
bounded by the x-axis and one arch of the cycloid

x=¢t—sint, y=1—cost

about the x-axis.

COMPUTER EXPLORATIONS
In Exercises 49-52, use a CAS to perform the following steps fog

given curve over the closed interval.

a. Plot the curve together with the polygonal path approximatio :-' !
n = 2,4, 8 partition points over the interval. (See Figure 11,13
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-
4 Find the corresponding approximation to the length of the curve “
by summing the lengths of the line segments.

. Evaluate the length of the curve using an integral. Compare your 50
= oroximations for n = 2, 4,8 with the actual length given by
" the integral. How does the actual length compare with the approx-

1, _ 1o
. x =30 y=3

L x=20-160 +25t+5, y=£+1-3, 0=1=6

0=1r=1

51. x=t—cost, y=1+sint, - m=t=m7

'
i
By

¢_ 1 . 3 Polar Coordinates

. imations as n increases? Explain your answer.

52, x=¢'cost, y=¢€sint, 0=t=m

ying figure, %
1e is r

L,

P(r,8)

— X
- Initial ray
L
FIGURE 11,19 To define polar
goordinates for the plane, we start with an
inigin, called the pole, and an initial ray.

“

ch curvesor | e
iterior of the [
izontal, and
kbt

x=sin2,
y=sin3t
.I‘ — X
1 1 Initial ray
4 =0
~ URE 11.20 Polar coordinates are
20t unique.
rone archof : 6=m/6
» the region
. w/6
N =k
PR, 1T\ - p[2T
ooy
steps for the

RE 11.21 Polar coordinates can
¥E negative r-values.

In this section we study polar coordinates and their relation to Cartesian coordinates. Yot
will see that polar coordinates are very useful for calculating many multiple integrals stud
ied in Chapter 15. They are also useful in describing the paths of planets and satellites.

Definition of Polar Coordinates

To define polar coordinates, we first fix an origin O (called the pole) and an initial ra
from O (Figure 11.19). Usually the positive x-axis is chosen as the initial ray. Then eacl
point P can be located by assigning to it a polar coordinate pair (r, 6) in which r give
the directed distance from O to P and 6 gives the directed angle from the initial ray to ra)
OP. So we label the point P as

P(r,0)

Directed distance
from O to P

Directed angle from
initial ray to OP

As in trigonometry, 6 is positive when measured counterclockwise and negative whe:
measured clockwise. The angle associated with a given point is not unique. While a poin
in the plane has just one pair of Cartesian coordinates, it has infinitely many pairs of pola
coordinates. For instance, the point 2 units from the origin along the ray 6 = /6 ha
polar coordinates r = 2, § = /6. It also has coordinates r = 2,0 = —117/6 (Figur
11.20). In some situations we allow r to be negative. That is why we use directed distanc
in defining P(r, 8). The point P(2, 77 /6) can be reached by turning 777 /6 radians coun
terclockwise from the initial ray and going forward 2 units (Figure 11.21). It can also b
reached by turning 7 /6 radians counterclockwise from the initial ray and going backwar
2 units. So the point also has polar coordinates r = —2,6 = 7 /6.

EXAMPLE 1 Find all the polar coordinates of the point P(2, 7 /6).

Solution We sketch the initial ray of the coordinate system, draw the ray from the or
gin that makes an angle of 7 /6 radians with the initial ray, and mark the point (2, /€
(Figure 11.22). We then find the angles for the other coordinate pairs of P in which r =
and r = —2.

For r = 2, the complete list of angles is

g Z4 T 4 +
6 + 2m, 6_471', ol < v S

=]
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(b) r* =4rcosh

The Cartesian equation:

The graph:

— 4
2cosf — sinf

(€ r=

The Cartesian equation:

The graph:

Polar Coordinates

1. Which polar coordinate pairs label the same point?

a. (3,0 b. (—=3,0) c. (2,2n/3)
d. (2,77/3) e. (—3,m £. 2,7/3)
g (-3.2m) h. (—2,—m/3)

2. Which polar coordinate pairs label the same point?
a (—-2,7/3) b. (2,—m/3) c. (r,0)
d. (.6 +m e. (-r,8) £ (2,-2m/3)
g (-r,0 +m h. (-2,27/3)

3. Plot the following points (given in polar coordinates). Then find
all the polar coordinates of each point.

a (2,7/2) b. (2,0)
¢ (=2.7/2) d. (-2,0)

4. Plot the following points (given in polar coordinates). Then find
all the polar coordinates of each point.

a. (3,7/4) b. (=3, 7/4)
c. (3,—m/4) d. (-3,-7/4)

Polar to Cartesian Coordinates
5. Find the Cartesian coordinates of the points in Exercise 1.

6. Find the Cartesian coordinates of the following points (given in

polar coordinates).
a (V2,m/4) b. (1,0)
¢ (0,7/2) d. (-V2,m/4)

T T L ST S S R L

X+ y2 = 4x

2 —4x+y*=0
x*—4x+ 4+ y2 = Completing the square
x—2PF+y'=4 Factoring

Substitution

Circle, radius 2, center (h, k) = (2,0)

H2cosf — sinfl) =

2rcosf — rsinf = 4 Multiplying by r
XX —y= 4 Substitution
y=2x—4 Solve for y.

Line, slope m = 2, y-intercept b = —4

TIWES Tl ST S T =

e. (=3,5m/6)
g (-1,77)

f. (5,tan'(4/3))

h. (2V3,27/3)

Cartesian to Polar Coordinates

7. Find the polar coordinates, 0 = 6 < 27 and r = 0, ofﬂﬁ
lowing points given in Cartesian coordinates. :

a (1,1)

[ (V’.’?—l]

b. (=3,0)
d. (-3,4

8. Find the polar coordinates, —7 = 6§ < w and r = 0, oftho

lowing points given in Cartesian coordinates.
a. (-2,-2) b. (0,3)
e. (-V3.1) d. (5,-12)

9. Find the polar coordinates, 0 < 6 < 27 and r =< 0, of the fd

lowing points given in Cartesian coordinates.
a. (3,3 b. (—1,0)
e (-1,V3) d. (4,-3)

10. Find the polar coordinates, —7 < 6 < 27 and r < 0, of the o

lowing points given in Cartesian coordinates.

a. (=2,0) b. (1,0) 3
. (0,-3) d. (—{—3« z‘,) £

Graphing Sets of Polar Coordinate Points

Graph the sets of points whose polar coordinates satisfy the eq _ 0

and inequalities in Exercises 11-26.
1. r=2 122.0=r=2
13. r=1 4 1=r=2

r? =4rcos @ 4




are

0, of the fol-

0, of the fol-

0, of the fol-

: 0, of the foF

* the equation

16. 6 =2m/3, r=-2
18. 0 = llw/d, r=-1
20.0=m/2 r=0
. 0<=60=<m,
B, m/4=0=3m/4, 0sr=]

; 0=8=m/6 r=0
7. 0 =7/3, -1=r=3
p.0=m7/2, r=0

Bl 0<b=<m r=1 r=-1
_'-1r/453£‘n'/4, -i=r=1

9, —7/2<0=7/2,

l=r=2

% 0<0<m/2, 1< |r|=<2

; Polar to Cartesian Equations

. eplace the polar equations in Exercises 27-52 with equivalent Carte-
A gian equations. Then describe or identify the graph.

7. rcos6 =2 28, rsinf = -1

of rsinf =0 30. rcos® =0

4 |
9 31, r=4csch 32. r=-3sech

£ 33, rcos@ + rsinf =1 34, rsinf = rcosé

38 =1 36. r? = 4rsinf
Y 38. 2sin20 = 2

it sinf — 2cos f

:.r-—-cotﬂcscﬁ 40. r = 4tan B sech
r=cscfe st 42. rsin@ = Inr + Incos 6

]. .4 Graphing Polar Coordinate Equations

43.

45.
47.
49,

51.

11.4 Graphing Polar Coordinate Equations 6

44. cos’f = sin’f

46. r* = —6rsind

48. r=3cos ¥

50. r=2cosf - sinf

52. rsin (%'T - 8) =5

2 4+ 2rtcos fsinf = 1
r2 = —4rcosf
r=8sinf

r=72cosf + 2sinf

rsin(9+%)=2

Cartesian to Polar Equations
Replace the Cartesian equations in Exercises 53-66 with equival

polar equations.

53, x=17 54. y=1 55. x=y

56. x —y = 5. 2 +y = 58. 2 —y2 =1
59.'§+};zl 60. xy =2

61. y* = 4x 62. ¥ +xy+y =1

6. 2+ (y-22=4 64. (x — 5P +y* =125

65. x — 3P+ +1P=4 66. x+27+(—5=16

67.
68.

Find all polar coordinates of the origin.
Vertical and horizontal lines

a. Show that every vertical line in the xy-plane has a polar ec
tion of the form r = a sec 6.

b. Find the analogous polar equation for horizontal lines in
xy-plane.

Symmetry

It is often helpful to graph an equation expressed in polar coordinates in the Cartesian
plane. This section describes some techniques for graphing these equations using sym
tries and tangents to the graph.

Figure 11.27 illustrates the standard polar coordinate tests for symmetry. The follow
summary says how the symmetric points are related.

Symmetry Tests for Polar Graphs in the Cartesian xy-Plane

1. Symmetry about the x-axis: If the point (r, 8) lies on the graph, then the point
(r,—8) or (—r, m — 6) lies on the graph (Figure 11.27a).

2. Symmetry about the y-axis: If the point (r, 6) lies on the graph, then the point
(r,  — 8) or (—r, —8) lies on the graph (Figure 11.27b).

3. Symmetry about the origin: If the point (r, 6) lies on the graph, then the point
(—r, @) or (r, @ + ) lies on the graph (Figure 11.27c¢).
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(a) r*

1

No square roots of
negative numbers

(by r
(k T +1/sin 26
! _I\ [ \}:paﬂsfrnm
o | /= 771{ |3~ _ square roots
b 2 J /
\ /
-1 _.‘«‘, /
r= —%/sin 28
N/
(c) ¥y

3

Orl=sm29
a

FIGURE 11.30 Toplot r = f(8) in
the Cartesian rf-plane in (b), we first

Converting a Graph from the r- to xy-Plane

One way to graph a polar equation r = f(6) in the xy-plane is to make a table

(r, 8)-values, plot the corresponding points there, and connect them in order of incre
9. This can work well if enough points have been plotted to reveal all the loops and dip
ples in the graph. Another method of graphing is to :

1, first graph the function r = f(6) in the Cartesian r8-plane,
3. then use that Cartesian graph as a “table” and guide to sketch the polar coo dinag
graph in the xy-plane. e

This method is sometimes better than simple point plotting because the first Cz csia
graph, even when hastily drawn, shows at a glance where r is positive, negative, and nog
existent, as well as where r is increasing and decreasing. Here’s an example. 7 bir
) B,
5 g

L

behavior of the function this way.

EXAMPLE 3 Graph the lemniscate curve r* = sin 26 in the Cartesian xy-plane. /% - Gray
B .
Solution Here we begin by plotting > (not r) as a function of 6 in the Cartesi p %.
r?6-plane. See Figure 11.30a. We pass from there to the graph of r= = Vsin20 in }
rf-plane (Figure 11.30b), and then draw the polar graph (Figure 11.30c). The graph i _
Figure 11.30b “covers™ the final polar graph in Figure 11.30c twice. We could have mat - IE
aged with either loop alone, with the two upper halves, or with the two lower halves. Th .
double covering does no harm, however, and we actually learn a little more about:i (T

USING TECHNOLOGY Graphing Polar Curves Parametrically
For complicated polar curves we may need to use a graphing calculator or computer §
graph the curve. If the device does not plot polar graphs directly, we can convert r = (6)
into parametric form using the equations ]

plot 7 = sin 26 in the r*6-plane in (a) _ ; . y
p=— = co = = 4
and then ignore the values of 6 for which 2= rigosd = jill) cosd, Y ._r und = and
:::;éfl ;;'zgz:::‘::: ra;i; fmmh'hi s Then we use the device to draw a parametrized curve in the Cartesian xy-plane. It may 8 ;
. : i € - | necessary to use the parameter ¢ rather than 6 for the graphing device. i L
lemniscate in (c) twice (Example 3). -4 :
T R —rn —~ T N T - o e e = T i
sl B ] 114 5
Exercises g B % e
s R ine S L 7 b~
Symmetries and Polar Graphs , Graph the lemniscates in Exercises 13-16. What symmetries do these ‘a8
Identify the symmetries of the curves in Exercises 1-12. Then sketch curves have? - |
the curves in the xy-plane. 13. 2 =4cos 26 14. /2 = 4sin26 = ‘5'
1. r=1+cosé 2. r=2-2cosh 15. 72 = —sin 26 16. r2 = —cos 20
o . e
3. r=1-sin8 4, r=1+sinf Slopes of Polar Curves in the xy-Plane o e
B _ ) Find the slopes of the curves in Exercises 17-20 at the given p oints: ;:_; “R
5. r=2+sin0 6. r=1+2sinb Sketch the curves along with their tangents at these points. B
7. r = sin(8/2) 8. r = cos(6/2) 17. Cardioid r = -1 +cosf; 6= tx/2
18. Cardioid r=—1 +sin6; 6= &
9, /2 =cosf 10. r* = sinf s L+Eng; O=be ‘,"% :
19. Four-leaved rose r =sin20; 6 = tw/4, £3m/4 e
11. 2 = —sin# 12. 2 = —cos @ 20. Four-leavedrose r=cos20; 0 =0, t#/2, 7 .
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il , ing Limacons 30. Which of the following has the same graph as r = cos 267
B Braph the limagons in Exercises 21-24. Limagon (“lee-ma-sahn”) is a r=—sin(20 + w/2) b. r=—cos(6/2)
:01' ] _meh rof S;ml' -Y0;1wﬂl um:frm?d u;c nm:;e wl:l:: ey;:;g;::::: Confirm your answer with algebra.
g g limagons In EXErcise =7 Equ.a 05, T s 31. A rose within a rose  Graph the equation r = 1 — 2 sin 36.
m- b=a * bcosBorr=a + b sin 6. There are four basic shapes. i 0 e i e
e, ‘ cons with an inner loop 32_ The nephroid of Free Graph the nephroid of Freeth:
] i _ .8
‘If-' k r-§+mse b.r—2+sm6 r—l+25m2.
e S P, Cardioids T133. Roses Graph the roses r = cos mf form = 1/3,2,3, and 7.
. . p
e = 1 - cos 8 B #2551 ¥amb [T]34. Spirals Polar coordinates are just the thing for defining spirals.
an 3, Dimpled limagons : Graph the following spirals.
LY _\a.r=%+cosﬂ b.r=%*sin9 a.r=0
Oﬂll limacons b. r= —B. - -
. b r=2+cosh B == i ¢. A logarithmic spiral: r =
et d. A hyperbolic spiral: r = 8/8
=% raphing Polar Regions and Curves in the xy-Plane . _
AR : 1 bola: r = +10/V8
S 5. Sketch the region defined by the inequalities —1 = r = 2 and e. An equilateral hyperbola: r /
LS R -r/2=0=m/2 (Use different colors for the two branches.)
o 6. Sketch the region defined by the inequalities 0 < r = 2sec [T]35. Graph the equation r = sin(} 6) for 0 = 6 = 147
ﬁ and -7/4 < 6 < m/4. ‘- [T]36. Graph the equation
> ‘,'Bxcmscs 27 and 28, sketch the region defined by the inequality. r = sin?(2.36) + cos*(2.30)
he 3. 0<r=2-2cosf 28, 0= r? <cosb
he 29, Which of the following has the same graph as r = 1 — cos 67 for 0 = 6 = 107.
& ‘2. r=—1—cosb b. r=1+cosf
'. “Confirm your answer with algebra.
0 .
f i 1 5 ; .
: 1 1.9 Areas and Lengths in Polar Coordinates
This section shows how to calculate areas of plane regions and lengths of curves in polar
6=8 coordinates. The defining ideas are the same as before, but the formulas are different in
% /kﬂgk : polar versus Cartesian coordinates.
{ S SN -4
. (f(6;), 6) :
: Area in the Plane
The region OTS in Figure 11.31 is bounded by the rays 6 = a and & = B and the curve
- L -1=16) r = f(6). We approximate the region with n nonoverlapping fan-shaped circular sec-
tors based on a partition P of angle TOS. The typical sector has radius r, = f(6,) and
_ central angle of radian measure Af,. Its area is A6;/27 times the area of a circle of
@ ; /ﬂ 7 = & radius r, or
T
Y ‘:—% B‘( l 1
" A‘, = 'irkz ﬁﬂk = 5 (f{ﬂk))z Aﬂk
FIGURE 11.31 To derive a formula for ; ‘ :
4 he area of region OTS, we approximate The area of region OTS is approximately

Ahe region with fan-shaped circular sectors.

>3 (60) 46,

A=
k=1 k=1

If f is continuous, we expect the approximations to improve as the norm of the parti-
tion P goes to zero, where the norm of P is the largest value of A6,. We are then led to the
following formula defining the region’s area:

U



