Math 21C
Kouba
Exact Change, Differential, Chain Rule

Assume that function \(z = f(x, y) \) has continuous partial derivatives and that point \((x, y)\) changes from \((x_1, y_1)\) to \((x_2, y_2)\). Let \(z_1 = f(x_1, y_1) \) and \(z_2 = f(x_2, y_2) \). Define the exact change in \(f \) (or \(z \)) to be

\[
\Delta f = z_2 - z_1.
\]

Let \(\Delta x = x_2 - x_1 \) and \(\Delta y = y_2 - y_1 \). Now define the differential of \(f \) (or \(z \)) to be

\[
df = \frac{\partial f}{\partial x}(x_1, y_1) \Delta x + \frac{\partial f}{\partial y}(x_1, y_1) \Delta y.
\]

It can be proven using continuity, the Mean Value Theorem, and the differential for a function of one variable that

\[
\Delta f = \frac{\partial f}{\partial x}(x_1, y_1) \Delta x + \frac{\partial f}{\partial y}(x_1, y_1) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y,
\]

where \(\epsilon_1 \to 0 \) and \(\epsilon_2 \to 0 \) as \(\Delta x \to 0 \) and \(\Delta y \to 0 \). It follows immediately that

\[
\Delta f \approx df
\]

if both \(\Delta x \) and \(\Delta y \) are “small.” Thus, the differential \(df \) can be considered an approximation to the exact change \(\Delta f \).

Now assume that \(z = f(x, y), x = g(t), \) and \(y = h(t) \). The above equation for \(\Delta f \) leads to the following chain rule:

\[
\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}.
\]

If \(z = f(x, y), x = g(u, v), \) and \(y = h(u, v) \), then the above equation for \(\Delta f \) leads to the following chain rules:

\[
\frac{\partial z}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \quad \text{and} \quad \frac{\partial z}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}.
\]