

Math 21C
 Kouba
 Practice Exam 1

1.) (12 pts. each) Find z_x and z_y for each of the following. You need not simplify your answers.

a.) $z = xy^3 + \tan(x - y)$

b.) $z = 7 + \ln\{(e^{x^2}) + \arctan(\sin x)\}$

c.) $z = y^x \cos(xy)$

2.) (10 pts.) Neatly sketch the surface $z = x^2 + y^2 = 1$.

3.) (10 pts.) Consider the function $z = 4x / (x^2 + y^2)$.

a.) Accurately sketch the level curves for the following values of z :
 $4, 2, 1, 1/2, 0, -1/2, -1$.

b.) Describe in words what you think this surface looks like.

4.) (10 pts.) Assume that the height $h = h(t)$ and the radius $r = r(t)$ of the given cone are functions of time t . If the radius is increasing at the rate of 3 ft./sec. when $r = 2$ ft. and the height is decreasing at the rate of 2 ft./sec. when $h = 4$ ft., at what rate is the volume changing when $r = 2$ ft. and $h = 4$ ft. ? (HINT : $V = \frac{1}{3} \pi r^2 h$.)

5.) (10 pts.) If the radius of the cone in problem 4.) is measured with a maximum possible error of 5% and the height is measured with a maximum possible error of 3%, what is the maximum possible error in measuring the volume of the cone ?

6.) (12 pts.) Verify that $f(x, y) = \ln(1 + x^r + y^r)$, where r is a constant, satisfies the partial differential equation

$$f_{xy} + f_x f_y = 0.$$

7.) (12 pts.) Assume that $w = f(x, y, z)$ and $f(u - t, t, u) = 0$.

Show that $f_y + f_z = 0$.

EXTRA CREDIT PROBLEM -- This problem is worth 10 points.

Find an equation for the plane tangent to the surface $z = x^2 + y^4$ at the point $(1, -1, 2)$. Also include a clear verification that the plane is tangent to the given surface at the specific point.