1.) (12 pts. each) Find z_x and z_y for each of the following. You need not simplify your answers.

a.) $z = xy^3 + \tan(x - y)$

b.) $z = 7 + \ln\left\{ \left(e^{x^2}\right) + \arctan(\sin x) \right\}$

c.) $z = y^x \cos(x+y)$

2.) (10 pts.) Neatly sketch the surface $z - x^2 - y^2 = 1$.

3.) (10 pts.) Consider the function $z = 4x/\sqrt{x^2 + y^2}$.

 a.) Accurately sketch the level curves for the following values of z: 4, 2, 1, 1/2, 0, -1/2, -1.

 b.) Describe in words what you think this surface looks like.
4.) (10 pts.) Assume that the height $h = h(t)$ and the radius $r = r(t)$ of the given cone are functions of time t. If the radius is increasing at the rate of 3 ft./sec. when $r = 2$ ft. and the height is decreasing at the rate of 2 ft./sec. when $h = 4$ ft., at what rate is the volume changing when $r = 2$ ft. and $h = 4$ ft.? (HINT: $V = 1/3 \pi r^2 h$.)

5.) (10 pts.) If the radius of the cone in problem 4.) is measured with a maximum possible error of 5% and the height is measured with a maximum possible error of 3%, what is the maximum possible error in measuring the volume of the cone?

6.) (12 pts.) Verify that $f(x, y) = \ln (1 + x^r + y^r)$, where r is a constant, satisfies the partial differential equation $f_{xy} + f_x f_y = 0$.

7.) (12 pts.) Assume that $w = f(x, y, z)$ and $f(u - t, t, u) = 0$. Show that $f_y + f_z = 0$.

EXTRA CREDIT PROBLEM -- This problem is worth 10 points.

Find an equation for the plane tangent to the surface $z = x^2 + y^4$ at the point (1,−1, 2). Also include a clear verification that the plane is tangent to the given surface at the specific point.