Math 21C Kouba Gradient Vectors and Vectors Normal to Level Curves

<u>Partial Derivatives and Implicit Differentiation</u>: Assume that function F(x, y) = c, where c is a constant and y = g(x), is an equation in x and y. We will show here a new way to find the ordinary derivative $y' = \frac{dy}{dx}$ using the Chain Rule for partial derivatives. From the diagram and the Chain Rule we get

<u>DEFINITION</u>: (I.) Let z = f(x, y) be a function. The gradient vector of f at the point (x, y) is

$$\overrightarrow{\nabla} f = \overrightarrow{\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)}$$

(II.) Let w = f(x, y, z) be a function. The gradient vector of f at the point (x, y, z) is

$$\overrightarrow{\nabla} f = \overline{\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)}$$

THEOREM (Gradient Vectors and Level Curves): (I.) Let z = f(x, y) be a function and let (x, y) = (a, b) with f(a, b) = c. Then the gradient vector $\overrightarrow{\nabla} f(a, b)$ is normal (perpendicular) to the *level curve* f(x, y) = c.

 $\frac{dy}{dx} = \frac{-f_x}{f_y} = \frac{rise}{run} = \frac{change in y}{change in x}$

so that a vector parallel to the tangent line at (a, b) is

$$\overrightarrow{T} = \overrightarrow{(f_y, -f_x)} \; .$$

(Recall that vectors \overrightarrow{v} and \overrightarrow{w} are orthogonal (perpendicular) iff $\overrightarrow{v} \cdot \overrightarrow{w} = 0$.) Then

$$\overrightarrow{T} \cdot \overrightarrow{\nabla} f(a,b) = \overrightarrow{(f_y, -f_x)} \cdot \overrightarrow{(f_x, f_y)} = f_x f_y - f_x f_y = 0$$
. QED

THEOREM (Gradient Vectors and Level Curves): (II.) Let w = f(x, y, z)be a function and let (x, y, z) = (a, b, c) with f(a, b, c) = d. Then the gradient vector $\overrightarrow{\nabla} f(a, b, c)$ is normal (perpendicular) to the *level curve* f(x, y, z) = d.

 \underline{PROOF} : This requires the concept of a vector function, which will be coverd in Math 21D.

