Section 14.1

1.) d.) \(f(x, y) = x^2 + xy^3 \rightarrow f(3, -2) = (3)^2 + 3(-2)^3 = 9 - 24 = -15 \)

4.) c.) \(f(x, y, z) = \sqrt{49-x^2-y^2-z^2} \rightarrow \)
\(f(-1, 2, 3) = \sqrt{49-(-1)^2-(2)^2-(3)^2} \)
\(= \sqrt{49-1-4-9} = \sqrt{35} \)

5.) \(f(x, y) = \sqrt{y-x-2} ; \) need \(y-x-2 \geq 0 \)

\(\rightarrow y \geq x + 2 \Rightarrow \)

Domain: all pts. \((x, y) \) on or above the line \(y = x + 2 \)

7.) \(f(x, y) = \frac{(x-1)(y+2)}{(y-x)(y-x^3)} \rightarrow \)
\(y \neq x, y \neq x^3 \;

Domain: all pts. \((x, y) \) NOT on graphs \(y = x, y = x^3 \)
10. \(f(x, y) = \ln \left(x + y + x - y - 1 \right) \)
 \[= \ln \left((x-1)(y+1) \right) \]
 need \((x-1)(y+1) > 0 \)
 \((x-1)(y+1) = 0 \) when \(x = 1 \) or \(y = -1 \).
 now choose test point in each of the 4 regions.
 Domain: all pts. \((x, y)\) in the shaded regions.

11. \(f(x, y) = \sqrt{(x^2-4)(y^2-9)} = \sqrt{(x-2)(x+2)(y-3)(y+3)} \)
 need \((x-2)(x+2)(y-3)(y+3) \geq 0 \)
 \((x-2)(x+2)(y-3)(y+3) = 0 \) when \(x = 2, x = -2, y = 3, \) or \(y = -3 \).
 now choose test point in each of the 9 regions.
 Domain: all pts. \((x, y)\) on the lines \(x = 2, x = -2, y = 3, y = -3 \) or in shaded regions.
18.) \(f(x, y) = \sqrt{y-x} \)
 a.) **Domain:** \(y-x \geq 0 \)
 \(\Rightarrow \) all pts. \((x, y)\) with \(y \geq x \)

b.) Consider all pts. \((0, y)\) for \(0 \leq y < \infty \); for these pts., the \(z \)-value is \(z = \sqrt{y} \) and \(0 \leq z < \infty \). It follows (since \(\sqrt{x-y} \geq 0 \)) that the **Range** of \(f \) is \(0 \leq z < \infty \).

19.) \(f(x, y) = 4(x^2 + 9y^2) \)
 a.) **Domain:**
 all pts. \((x, y)\)
 b.) Consider all pts. \((x, 0)\) for \(-\infty < x < \infty \); for these pts., the \(z \)-value is \(z = 4x^2 \) and \(0 \leq z < \infty \). It follows (since \(4x^2 + 9y^2 \geq 0 \)) that the **Range** of \(f \) is \(0 \leq z < \infty \).

23.) \(f(x, y) = \frac{1}{\sqrt{16-x^2-y^2}} \)
 a.) **Domain:** \(16-x^2-y^2 > 0 \)
 \(\Rightarrow \) \(x^2 + y^2 < 16 \) so domain is set of pts. \((x, y)\) inside the circle \(x^2 + y^2 = 4^2 \)
b.) Consider all pts. (x, y), where -4 < x < 4; for these pts. the z-value is \(z = \frac{1}{\sqrt{16 - x^2}} \); note that \(z = \frac{1}{4} \) if \(x = 0 \) and \(\lim_{x \to 4^-} z = \lim_{x \to 4^-} \frac{1}{\sqrt{16 - x^2}} = \frac{1}{10} = +\infty \). The z-values range for \(z = \frac{1}{4} \) to \(+\infty \); since \(\frac{1}{4} \leq \frac{1}{\sqrt{16 - x^2}} \), it follows that the Range of \(f \) is \(\frac{1}{4} \leq z < \infty \).

24.) \(f(x, y) = \sqrt{9 - x^2 - y^2} \)

a.) **Domain:** \(9 - x^2 - y^2 \geq 0 \)

\[x^2 + y^2 \leq 9 \]

so domain is set of all pts. \((x, y)\) on or inside the circle \(x^2 + y^2 = 3^2 \).

b.) Consider that \(z = \sqrt{9 - x^2 - y^2} \) \(\Rightarrow z^2 = 9 - x^2 - y^2 \) \(\Rightarrow x^2 + y^2 + z^2 = 3^2 \) is a sphere of radius 3 centered at \((0, 0, 0)\); the \(z = \sqrt{9 - x^2 - y^2} \) is the top half of the sphere, so the **Range** of \(f \) is \(0 \leq z \leq 3 \).

25.) \(f(x, y) = \ln(x^2 + y^2) \)

a.) **Domain:** \(x^2 + y^2 > 0 \) so domain is set of all pts. \((x, y)\) except \((0, 0)\);
b.) Consider all pts. $(x, 0)$ where $0 < x < \infty$; for these pts. the z-value is $z = \ln x^2 \rightarrow z = 2 \ln x$; these z-values range from $-\infty$ to $+\infty$; it follows that the range of f is $-\infty < z < \infty$.

\[f(x, y) = \ln (4 - x^2 - y^2) \]

a.) Domain: $4 - x^2 - y^2 > 0 \rightarrow x^2 + y^2 < 4$ so domain is set of all pts. (x, y) inside the circle $x^2 + y^2 = 4$.

b.) Range: Consider x^2-trace of surface $z = \ln (4 - x^2 - y^2) \rightarrow y = 0 \rightarrow $
\[z = \ln (4 - x^2) \]

If \(z = 0 \):
\[
0 = \ln (4 - x^2) \\
\rightarrow 4 - x^2 = 1 \\
\rightarrow x^2 = 3 \\
\rightarrow x = \pm \sqrt{3}
\]

If \(x = 0 \):
\[z = \ln 4 \]

so **range** is all values of \(z \) satisfying \(-\infty < z \leq \ln 4\)