Section 16.3
Thomas Calculus
11th Ed.

Gradient Fields (Conservative Vector Fields) and Path Independence

Recall: Consider the scalar function \(w = f(x, y, z) \). Its gradient field is the vector field
\[
\vec{\nabla}f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}
\]

Example I: \(f(x, y, z) = xy + yz + xz \), then its gradient field is
\[
\vec{\nabla}f(x, y, z) = (y + z)\hat{i} + (x + z)\hat{j} + (x + y)\hat{k}
\]

Of course, not all vector fields are gradient fields. This is just one type of vector field. However, gradient fields have very special properties.

Recall: Let \(\vec{F} \) be a vector field defined on path \(C : \vec{r}(t) \) for \(a \leq t \leq b \). The work done by \(\vec{F} \) on path \(C \) is
\[
\text{Work} = \int_C \vec{F} \cdot \vec{T} \, ds
\]
Note: In general,
\[\int_{C_1} F \cdot T \, ds + \int_{C_2} F \cdot T \, ds = \int_{C_2} F \cdot T \, ds + \int_{C_1} F \cdot T \, ds \]
for different paths \(C_1 \) and \(C_2 \) between points \(A \) and \(B \). However, for some vector fields \(F \)
\[\int_{C_1} F \cdot T \, ds = \int_{C_2} F \cdot T \, ds \]
for all paths \(C_1 \) and \(C_2 \) between points \(A \) and \(B \). (See problem 12, p. 1142.)

Def: Let \(F \) be a vector field defined on a region \(D \) and let \(A \) and \(B \)
be any two points in \(D \). If
\[\int_{C_1} F \cdot T \, ds = \int_{C_2} F \cdot T \, ds \]
for any two paths \(C_1 \) and \(C_2 \)
from point \(A \) to point \(B \), then we call \(F \) a conservative vector field. We say that the work integral from point \(A \) to point
B is path independent.

Ex: It will be shown later that the vector field in Example A is conservative.

Recall: (FTC from Math 21B)

If \(f'(x) = F(x) \), then

\[
\int_a^b F(x) \, dx = f(x) \bigg|_a^b = f(b) - f(a).
\]

Recall: (Chain Rule) If \(w = f(x, y, z) \) and \(x = g(t) \), \(y = h(t) \), and \(z = k(t) \), then

\[
\frac{df}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} + f_z \frac{dz}{dt}.
\]

Fundamental Theorem for Line Integrals: Let \(w = f(x, y, z) \) be a scalar function and let \(\mathbf{F} = f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k} \) be its gradient field defined on path \(\mathbf{C} \) with \(\mathbf{C} : \mathbf{r}(t) = g(t) \mathbf{i} + h(t) \mathbf{j} + k(t) \mathbf{k} \) for \(a \leq t \leq b \). Let \(A = \mathbf{r}(a) \) and \(B = \mathbf{r}(b) \). Then

\[
\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{s} = f(\mathbf{r}(b)) \bigg|_a^b = f(B) - f(A).
\]
\[\text{Proof: } \int_C \nabla f(p) \cdot \vec{T} \, ds = \int_C \nabla f(\vec{r}(t)) \cdot \vec{r}'(t) \, dt \]
\[= \int_a^b (f_x \vec{i} + f_y \vec{j} + f_z \vec{k}) \cdot (g'(t) \vec{i} + h'(t) \vec{j} + k'(t) \vec{k}) \, dt \]
\[= \int_a^b (f_x \cdot g'(t) + f_y \cdot h'(t) + f_z \cdot k'(t)) \, dt \]
\[= \int_a^b \frac{d}{dt} f(g(t), h(t), k(t)) \, dt \quad \text{ (Chain Rule)} \]
\[= f(g(b), h(b), k(b)) - f(g(a), h(a), k(a)) \]
\[= f(B) - f(A) \]

Fact: \[\int_{t=a}^{t=b} f(p) \, ds = -\int_{t=b}^{t=a} f(p) \, ds \]

Theorem 1: A vector field \(\vec{F} \) is conservative iff \[\int_C \vec{F} \cdot \vec{T} \, ds = 0 \]
for every closed curve \(C \).

Proof: (\(\Rightarrow \)) Assume \(\vec{F} \) is conservative. Show that \[\int_C \vec{F} \cdot \vec{T} \, ds = 0 \] for every closed curve \(C \). Let \(C \) be a closed...
path starting at point A. Let B be another point on path C. Let \(C_1 \) be the path from A to B and let \(C_2 \) be the path from B to A. Since \(\vec{F} \) is conservative, we know that all work integrals from point A to point B are equal, so that
\[
\int_{C_1} \vec{F} \cdot d\vec{s} = -\int_{C_2} \vec{F} \cdot d\vec{s}.
\]
Then
\[
\int_{C} \vec{F} \cdot d\vec{s} = \int_{C_1} \vec{F} \cdot d\vec{s} + \int_{C_2} \vec{F} \cdot d\vec{s} = -\int_{C_2} \vec{F} \cdot d\vec{s} + \int_{C_2} \vec{F} \cdot d\vec{s} = 0.
\]
(\(\Leftarrow \) assume \(\int_{C} \vec{F} \cdot d\vec{s} = 0 \) for every closed curve \(C \). Let A and B be any two points. Show that \(\vec{F} \) is conservative, i.e., show that
\[
\int_{C_1} \vec{F} \cdot d\vec{s} = \int_{C_2} \vec{F} \cdot d\vec{s}
\]
for any two paths \(C_1 \) and \(C_2 \) from point A to point B. Consider the
closed path C
from A to B (along C_1) and then from B to A (reverse of C_2). Then
\[0 = \oint_C \mathbf{F} \cdot d\mathbf{s} = \int_{C_1} \mathbf{F} \cdot d\mathbf{s} + \left(-\int_{C_2} \mathbf{F} \cdot d\mathbf{s} \right) \]
\[\rightarrow \int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}. \]

Theorem 2: Let \mathbf{F} be a gradient field, i.e., assume that $\mathbf{F} = \nabla f$ for some scalar function $w = f(x, y, z)$. Then \mathbf{F} is conservative.

Proof: Let path C be given by
$\mathbf{r}(t) = g(t) \mathbf{i} + h(t) \mathbf{j} + k(t) \mathbf{k}$ for $a \leq t \leq b$,
where $\mathbf{A} = \mathbf{r}(a)$ and $\mathbf{B} = \mathbf{r}(b)$. Then
\[\int_C \mathbf{F} \cdot d\mathbf{s} = \int_C \nabla f \cdot d\mathbf{s} \]
\[= f(\mathbf{r}(t)) \bigg|_a^b = f(\mathbf{B}) - f(\mathbf{A}). \]
(by Fundamental Theorem for Line Integrals)
The answer implies that only the endpoints of path C matter, so that the work integral from point A to point B is path independent. This means \mathbf{F} is conservative.

Theorem 3: Assume that \mathbf{F} is a conservative vector field. Then \mathbf{F} must also be a gradient field, i.e., there is some scalar function $\varphi = \varphi(x, y, z)$ so that

$$\mathbf{F} = \nabla \varphi.$$

Proof: (in 2D-space) Assume that $\mathbf{F}(x, y) = M(x, y) \hat{i} + N(x, y) \hat{j}$ is a conservative vector field. Define scalar function φ as follows: for each point (x, y) select a path C from $(0, 0)$ to (x, y). Define

$$f(x, y) = \int_C \mathbf{F} \cdot d\mathbf{s}.$$

We will show that $\nabla \varphi = \mathbf{F}$ at $(0, 0)$, i.e., that $f_x = M$ and $f_y = N$.

7
Let \((x_0, y_0)\) be a fixed point and compute \(\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}\).

Let \(C_1\) be any path from \((0, 0)\) to \((x_0, y_0)\) and let \(C_2\) be the straight path from \((x_0, y_0)\) to \((x_0 + h, y_0)\). Let \(C\) be the combined paths \(C_1\) and \(C_2\) combined. Then

\[
\begin{align*}
 f(x_0, y_0) & = \int_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds, \\
 f(x_0 + h, y_0) & = \int_{C} \mathbf{F} \cdot \mathbf{T} \, ds \\
 & = \int_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds + \int_{C_2} \mathbf{F} \cdot \mathbf{T} \, ds \\
 & = \int_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds + \int_{C_2} \mathbf{F} \cdot \mathbf{n}'(t) \, dt \\
 & = \int_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds + \int_{C_2} (M \hat{c} + N \hat{j}) \left(\frac{dx}{dt} \hat{c} + \frac{dy}{dt} \hat{j} \right) \, dt \\
 & = \int_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds + \int_{C_2} M \frac{dx}{dt} \, dt \\
 & = \int_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds + \int_{x_0}^{x_0 + h} M(x, y_0) \, dx \
\end{align*}
\]

Thus, \(\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}\).
\[\lim_{h \to 0} \frac{\int_{x_0}^{x_0+h} M(x, y) \, dx}{h} = M(x_0, y_0) \text{ i.e.,} \]

\[\frac{\partial f}{\partial x}(x_0, y_0) = M(x_0, y_0); \text{ similarly,} \]

\[\frac{\partial f}{\partial y}(x_0, y_0) = N(x_0, y_0). \text{ This establishes that } \vec{F} = \nabla f. \]

\[(\ast) \text{ (Recall: FTC from Math 21B)} \]

\[\frac{d}{dx} \int_{a}^{x} G(t) \, dt = G(x) \text{ and} \]

\[\frac{d}{dx} \int_{a}^{x} G(t) \, dt = \lim_{h \to 0} \frac{\int_{a}^{x+h} G(t) \, dt - \int_{a}^{x} G(t) \, dt}{h} \]

\[= \lim_{h \to 0} \frac{\int_{x}^{x+h} G(t) \, dt}{h} = G(x). \]

Question: Is there a test to determine if a given vector field \(\vec{F} \) is conservative? ... YES!

Component Test for Conservative Fields:

1) Let

\[\vec{F}(x, y, z) = M(x, y, z) \vec{i} + N(x, y, z) \vec{j} + P(x, y, z) \vec{k} \]
be a vector field. Then \(\vec{F} \) is CONSERVATIVE iff

\[P_y = N_z, \quad M_z = P_x, \quad \text{and} \quad N_x = M_y. \]

II. Let \(\vec{F}(x,y) = M(x,y) \hat{i} + N(x,y) \hat{j} \) be a vector field. Then \(\vec{F} \) is CONSERVATIVE iff

\[N_x = M_y. \]

Proof: (\(\Rightarrow \)) If \(\vec{F} \) is conservative, then there is a scalar function \(f \) satisfying \(\vec{F} = \nabla f \); thus

\[\vec{F} = M \hat{i} + N \hat{j} + P \hat{k} = f_x \hat{i} + f_y \hat{j} + f_z \hat{k}. \]

It follows that

\[P = f_z \rightarrow P_y = (f_z)_y = (f_y)_z = N_z; \]

\[M = f_x \rightarrow M_z = (f_x)_z = (f_z)_x = P_x; \]

\[N = f_y \rightarrow N_x = (f_y)_x = (f_x)_y = M_y. \]

(\(\Leftarrow \)) Omitted.

II. If \(\vec{F}(x,y) = M(x,y) \hat{i} + N(x,y) \hat{j} \)
then \(N_z = 0 \), \(M_z = 0 \), and \(P = 0 \) so that \(\rho_x = \rho_y = 0 \). The result follows.

Definition: We know that if \(\vec{F} \) is a conservative vector field, then \(\vec{F} = \nabla f \) for some scalar function \(f \). We call \(f \) a potential function for \(\vec{F} \).

Example: Show that each vector field \(\vec{F} \) is conservative and then find a potential function \(f \).

1. \(\vec{F}(x,y) = (xy^2) \vec{i} + (x^2y + 1) \vec{j} \)
2. \(\vec{F}(x,y,z) = (y) \vec{i} + (x) \vec{j} + (az) \vec{k} \)
3. \(\vec{F}(x, y) = (e^x \sin y + \tan y) \hat{i} + (e^x \cos y + x \sec^2 y) \hat{j} \)

4. \(\vec{F}(x, y, z) = \left(\frac{2x + 3x^2y^2}{z^2} \right) \hat{i} \\
+ \left(\frac{2x^3y}{z^2} \right) \hat{j} - \left(\frac{1 + 2x^2 + 2x^3y^2}{z^3} \right) \hat{k} \)

1. \(\vec{F}(x, y) = (xy^2) \hat{i} + (x^2y + 1) \hat{j} \), then

\[M_y = 2xy = N_x \], so this vector field is conservative; so

\[f_x = xy^2 \rightarrow f = \frac{1}{2} x^2 y^2 + g(y) \]

\[f_y = x^2 y + g'(y) = x^2 y + 1 \rightarrow \]

\[g'(y) = 1 \rightarrow g(y) = y + C_0 \], so

\[f(x, y) = \frac{1}{2} x^2 y^2 + y \] is a potential function.
3.) \(\vec{F}(x,y) = (e^x \sin y + \tan y) \hat{i} + (e^x \cos y + x \sec^2 y) \hat{j} \),

then

\[M_y = e^x \cos y + \sec^2 y = N_x, \]

so this vector field is conservative; so

\[f_x = e^x \sin y + \tan y \quad \Rightarrow \quad \nabla \times \vec{F} \]

\[f = e^x \sin y + x \tan y + g(y) \quad \Rightarrow \quad \nabla \cdot \vec{F} \]

\[f_y = e^x \cos y + x \sec^2 y + g'(y) \]

\[= e^x \cos y + x \sec^2 y \rightarrow g'(y) = 0 \rightarrow \]

\[g(y) = e^0, \text{ then } \]

\[f(x,y) = e^x \sin y + x \tan y \]

is a potential function.

2.) \(\vec{F}(x,y,z) = (y) \hat{i} + (x+1) \hat{j} + (2z-3) \hat{k} \),

then

\[P_y = 0 = N_z, \quad M_z = 0 = P_x, \text{ and } N_x = 1 = M_y, \]

so this vector field is conservative;
\[P_y = -\frac{0 + 2x^3(2y)}{z^3} = -\frac{4x^3y}{z^3} \quad \text{and} \]
\[N_z = 2x^3y \cdot (-2z^{-3}) = -\frac{4x^3y}{z^3}, \text{so} \]
\[P_y = N_z \quad j \]
\[N_x = \frac{6x^2y}{z^2} \quad \text{and} \]
\[M_y = \frac{0 + 3x^2(2y)}{z^2} = \frac{6x^2y}{z^2}, \text{so} \]
\[N_x = M_y \quad j \]
\[M_z = (2x + 3x^2y^2) \cdot (-2z^{-3}) \]
\[= -\frac{4x - 6x^2y^2}{z^3} \quad \text{and} \]
\[P_x = -\frac{4x + 6x^2y^2}{z^3}, \text{so} \]
\[M_z = P_x \quad j \quad \text{so this vector field is conservative.} \]
\[f_x = y \quad \overset{S_x}{\Rightarrow} \quad f = xy + g(y, z) \quad \overset{D_y}{\Rightarrow} \quad s_y \]

\[f_y = x + g_y(y, z) = x + 1 \quad \rightarrow \quad g_y(y, z) = 1 \quad \overset{D_2}{\Rightarrow} \quad f_z = 0 + 0 + k'(z) = 2z - 3 \quad \overset{S}{\Rightarrow} \quad k(z) = z^2 - 3z + e^0, \]

then

\[f(x, y, z) = xy + y + z^2 - 3z \]

is a potential function.

4.) \[\vec{F}(x, y, z) = \left(\frac{2x + 3x^2y^2}{z^2} \right) \hat{i} \]

\[+ \left(\frac{2x^3y}{z^2} \right) \hat{j} - \left(\frac{1 + 2x^2 + 2x^3y^2}{z^3} \right) \hat{k} \]

with

\[M = \frac{2x + 3x^2y^2}{z^2}, \quad N = \frac{2x^3y}{z^2}, \quad \text{and} \]

\[P = - \frac{2x^2 + 2x^3y^2}{z^3} \]

then
\[f_y = \frac{2x^3y}{z^2} \quad S_y \rightarrow f = \frac{2x^3 \cdot \frac{1}{2} y^2}{z^2} + g(x, z) \]

\[= \frac{x^3 y^2}{z^2} + g(x, z) \rightarrow D_x \]

\[f_x = \frac{3x^2y^2}{z^2} + g_x(x, z) \]

\[= \frac{2x}{z^2} + \frac{3x^2 y^2}{z^2} \rightarrow g_x(x, z) = \frac{2x}{z^2} \]

\[S_x \rightarrow g(x, z) = \frac{x^2}{z^2} + k(z) \rightarrow \]

\[f = \frac{x^3 y^2}{z^2} + \frac{x^2}{z^2} + k(z) \rightarrow D_z \]

\[f_z = x^3 y^2 (-2z^{-3}) + x^2 (-2z^{-3}) + k'(z) \]

\[= \frac{-2x^3 y^2}{z^3} + \frac{-2x^2}{z^3} + k'(z) \]

\[= -\frac{1}{z^3} - \frac{2x^2}{z^3} + \frac{-2x^3 y^2}{z^3} \rightarrow \]

\[k'(z) = \frac{-1}{z^3} = -z^{-3} \rightarrow k(z) = \frac{1}{2} z^{-2} + \phi_0 \]
\[f(x, y, z) = \frac{x^3 y^2 + x^2}{z^2} + \frac{1}{2z^2} \]

is a potential function.

Example: Consider the vector field

\[\mathbf{F}(x, y, z) = (y + z)i + (x + z)j + (x + y)k \]

and the path \(C \) in 3D space described as follows:

\(C \) starts at point \((1, 0, 0)\), follows the graph of \(y = \ln x \) in the \(xy \)-plane to point \((e^2, 2, 0)\), and then follows a straight line to the point \((0, 3, 4)\), where path \(C \) ends. Compute the work done by \(\mathbf{F} \) along path \(C \).
Here is path C:

Let's first check to see if \vec{F} is a conservative vector field:

$$\vec{F}(x, y, z) = (y + z) \hat{i} + (x + z) \hat{j} + (x + y) \hat{k}$$

$$p_y = 1 = N_z, \quad N_x = 1 = M_y, \quad \text{and} \quad M_z = 1 = P_x,$$

so \vec{F} is conservative. Now let's find a potential function f and apply The Fundamental
Theorem for line integrals.

Then

\[\mathbf{f}_x = y + z \Rightarrow f = xy + xz + g(y, z) \]

\[\mathbf{D}_x f_y = x + o + g_y(y, z) = x + z \Rightarrow \]

\[g_y(y, z) = z \Rightarrow g(y, z) = yz + k(z) \]

\[\Rightarrow f = xy + xz + yz + k(z) \Rightarrow \]

\[\mathbf{f}_z = o + x + y + k'(z) = x + y \Rightarrow \]

\[k'(z) = 0 \Rightarrow k(z) = c, \text{ then} \]

\[f(x, y, z) = xy + xz + yz \text{; apply Theorem getting} \]

Work = \[\int_C \mathbf{F} \cdot \mathbf{T} \, ds \]

\[= f(x, y, z) \bigg|^{(0, 3, 4)}_{(1, 0, 0)} \]

\[= [(0)(3) + (0)(4) + (3)(4)] - [(1)(0) + (1)(0) + (0)(0)] = 12 \]