Let \(R \) be a flat region in two-dimensional space and let \(\delta(P) \) be the density of the region at point \(P = (x, y) \).

1.) \[\text{AREA} : \int_R 1 \, dA \] represents the area of region \(R \).

2.) \[\text{AVERAGE VALUE} : \frac{1}{\text{Area of } R} \int_R f(x, y) \, dA \] represents the average value of function \(z = f(x, y) \) over region \(R \).

3.) \[\text{MASS} : \int_R \delta(P) \, dA \] represents the mass of region \(R \).

4.) \[\text{VOLUME} : \int_R f(P) \, dA \] represents the volume of the solid region defined on region \(R \) with height \(f(P) \) at point \(P \).

5.) \[\text{MOMENT} : \]
 a.) \[\int_R (x - a) \delta(P) \, dA \] represents the moment of region \(R \) about the vertical line \(x = a \).
 b.) \[\int_R (y - b) \delta(P) \, dA \] represents the moment of region \(R \) about the horizontal line \(y = b \).

6.) \[\text{CENTER OF MASS} , (\bar{x}, \bar{y}) : \]
 a.) \[\bar{x} = \frac{\int_R x \delta(P) \, dA}{\int_R \delta(P) \, dA} \] represents the \(x \)-coordinate of the center of mass of region \(R \).
 b.) \[\bar{y} = \frac{\int_R y \delta(P) \, dA}{\int_R \delta(P) \, dA} \] represents the \(y \)-coordinate of the center of mass of region \(R \).

7.) \[\text{CENTROID} , (\bar{x}, \bar{y}) : \]
 a.) \[\bar{x} = \frac{\int_R x \, dA}{\int_R 1 \, dA} \] represents the \(x \)-coordinate of the centroid of region \(R \).
 b.) \[\bar{y} = \frac{\int_R y \, dA}{\int_R 1 \, dA} \] represents the \(y \)-coordinate of the centroid of region \(R \).

NOTE : The formulas for centroid follow immediately from the formulas for center of mass by letting density \(\delta(P) = 1 \).

8.) \[\text{MOMENT OF INERTIA} : \int_R (\text{distance})^2 \delta(P) \, dA \] represents the moment of inertia of region \(R \), where \(\text{distance} \) refers to the distance from point \(P = (x, y) \) in region \(R \) to either a point or axis (line) of rotation.