Section 16.2
Thomas Calculus
11th Ed.

Vector Fields and Flux Across
a Closed Path C in the xy-Plane

(There are many different
Flux measures—magnetic,
mass, heat, energy,
momentum, etc. For the
sake of simplicity, I will
assume that Flux here is
related to fluid flow only.)

What is the meaning of Flux?

Recall that the Flow of velocity
vector field \mathbf{F} is a measure
of fluid flow ALONG a path C
and is given by

$$\text{Flow} = \int_C \mathbf{F} \cdot \mathbf{T} \, ds,$$

where \mathbf{T} is the
unit tangent vector.
In simple terms, the FLUX of velocity vector field \mathbf{F} is a measure of fluid flow ACROSS a path C enclosing a region R in the xy-plane.

Now let's bring in precise mathematical definitions and computations.

Assume that $\mathbf{F}(x,y) = M(x,y) \mathbf{i} + N(x,y) \mathbf{j}$ is a velocity vector field for a fluid with density units "mass" and velocity units "length/time" area.

Consider region R inside a closed path (loop) C in the xy-plane sitting on top of this moving fluid.

At any moment in time and at any point on path C:
1.) Some fluid ENTERS region R across path C, \\
2.) Some fluid EXITS region R across path C, \\
or 3.) no fluid enters or exits region R across path C. \\

We will use a unit vector, call it \mathbf{n}, an **Outward-Pointing Unit Normal Vector**. Here are the properties of \mathbf{n}: \\

1.) \mathbf{n} is a unit vector. \\
2.) \mathbf{n} is \perp to path C, i.e., \mathbf{n} is \perp to \mathbf{T}, the unit tangent vector to path C. \\
3.) \mathbf{n} points outward from region R.
Before we determine a formula for \(\hat{n} \), let's not confuse \(\hat{n} \) for \(\vec{N} \) the Principal Unit Normal Vector to path \(C \), which is also a unit vector, which is also \(\perp \) to path \(C \), but which points in the direction that path \(C \) is turning. Conclusion: Sometimes \(\hat{n} = \vec{N} \). Sometimes \(\hat{n} = -\vec{N} \). (See diagram below.)

If \(C \) is always "convex," then \(\hat{n}(t) = -\vec{N}(t) \). If \(C \) is sometimes "concave," then \(\hat{n}(t) = \vec{N}(t) \) sometimes. (See diagrams below.)
Recall:

I. \[\cos \theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{A}| \cdot |\overrightarrow{B}|} \]

(Follows from Law of Cosines)

\[\overrightarrow{proj}_B \overrightarrow{A} = (|\overrightarrow{A}| \cos \theta) \frac{\overrightarrow{B}}{|\overrightarrow{B}|} \]

\[= \frac{|\overrightarrow{A}| (\overrightarrow{A} \cdot \overrightarrow{B})}{|\overrightarrow{A}| \cdot |\overrightarrow{B}|} \cdot \frac{\overrightarrow{B}}{|\overrightarrow{B}|} = \frac{(\overrightarrow{A} \cdot \overrightarrow{B}) \overrightarrow{B}}{|\overrightarrow{B}|^2} \]

we assume \(\overrightarrow{B} \) is a unit vector, then \(|\overrightarrow{B}| = 1 \), and

\[\overrightarrow{proj}_B \overrightarrow{A} = (\overrightarrow{A} \cdot \overrightarrow{B}) \overrightarrow{B} \]

III. a.) If \(0 \leq \theta < \frac{\pi}{2} \), then \(\cos \theta \) is (+), so that \((\overrightarrow{A} \cdot \overrightarrow{B})\) is (+).

b.) If \(\frac{\pi}{2} < \theta \leq \pi \), then \(\cos \theta \) is (-), so that \((\overrightarrow{A} \cdot \overrightarrow{B})\) is (-).
c.) If \(\theta = \frac{\pi}{2} \), then \(\cos \theta = 0 \)

and \((A \cdot B) = 0 \).

Now here is how we will use \(\vec{n} \) to distinguish fluid flowing \textbf{IN} to region \(R \) from fluid flowing \textbf{OUT} of region \(R \).

\[\vec{F} \cdot \vec{n} \text{ is } (-) \quad \text{ (fluid enters } R) \]

\[\vec{F} \cdot \vec{n} \text{ is } (+) \quad \text{ (fluid exits } R) \]
Now consider a point on path \(C \), a small piece of arc length \(ds \), and

\[
\text{proj} \vec{F} = (\vec{F} \cdot \vec{n}) \vec{n}.
\]

The flow of fluid \textit{ACROSS} path \(C \) along the piece of arc length \(ds \) is approximately

\[
(\vec{F} \cdot \vec{n}) \ ds
\]

\[\uparrow\quad \uparrow\]
units: \(\left(\frac{\text{mass} \times \text{length}}{\text{area} \times \text{time}} \right) \times \text{length} = \frac{\text{mass}}{\text{time}} \).

Thus, the \textit{Total Flux} across path \(C \) is

\[
\text{Flux} = \oint_C (\vec{F} \cdot \vec{n}) \ ds
\]
Note: If total flux is

1.) **POSITIVE**, then more fluid exits region \(R \) than enters region \(R \), i.e., the fluid "expands" inside region \(R \).

2.) **NEGATIVE** then more fluid enters region \(R \) than exits region \(R \), i.e., the fluid "compresses" inside region \(R \).

3.) **ZERO**, then the same amount of fluid enters and exits region \(R \).

But we still don't have a formula for \(\overrightarrow{\mathbf{n}} \)! The next few pages will do this.

Recall: If \(\overrightarrow{\mathbf{v}} = v_1 \overrightarrow{i} + v_2 \overrightarrow{j} + v_3 \overrightarrow{k} \) and \(\overrightarrow{\mathbf{w}} = w_1 \overrightarrow{i} + w_2 \overrightarrow{j} + w_3 \overrightarrow{k} \) are vectors, then their **cross product is** the vector given by
\[\vec{V} \times \vec{W} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = (v_2w_3 - v_3w_2) \hat{i} - (v_1w_3 - v_3w_1) \hat{j} + (v_1w_2 - v_2w_1) \hat{k} \]

1. \(\vec{V} \times \vec{W} \) is \(\perp \) to both \(\vec{V} \) and \(\vec{W} \).
2. \(\vec{V} \times \vec{W} \) is oriented according to the right-hand rule.
3. The magnitude of \(\vec{V} \times \vec{W} \) is \(|\vec{V} \times \vec{W}| = |\vec{V}| |\vec{W}| \sin \theta \), the area of the parallelogram formed by \(\vec{V} \) and \(\vec{W} \):

\[
\begin{array}{c}
\vec{V} \\
\downarrow \theta \\
\vec{W}
\end{array}
\]

Method for Evaluating Flux

Assume \(\vec{C} : \vec{r}(t) = g(t) \hat{i} + h(t) \hat{j} \)

is oriented counter-clockwise.

Then \(\vec{n} = \vec{r} \times \vec{k} \).
\[\vec{n} = \vec{T} \times \vec{k} \]

(Use right-hand rule for Cross Product.)
\[\text{and } \vec{T}(t) = \frac{\vec{r}(t)}{\|\vec{r}(t)\|} = \frac{\frac{d\vec{r}}{dt}}{\frac{d\vec{r}}{ds}} \]
\[= \frac{d}{dt} \vec{r}(t) \cdot \frac{ds}{ds} = \frac{d}{ds} \vec{r}(t) \]
\[= \frac{d}{ds} \left(g(t) \hat{i} + h(t) \hat{j} \right) \]
\[= \frac{d}{ds} g(t) \hat{i} + \frac{d}{ds} h(t) \hat{j} \]
\[= \frac{dx}{ds} \hat{i} + \frac{dy}{ds} \hat{j}, \text{ i.e.,} \]
\[\vec{T}(t) = \frac{dx}{ds} \hat{i} + \frac{dy}{ds} \hat{j}; \text{ then} \]
\[\vec{n} = \vec{T} \times \vec{k} \]
\[= \left(\frac{dx}{ds} \hat{i} + \frac{dy}{ds} \hat{j} \right) \times \vec{k} \]
\[= \begin{vmatrix} \hat{i} & \hat{j} & \vec{k} \\ \frac{dx}{ds} & \frac{dy}{ds} & 0 \\ 0 & 0 & 1 \end{vmatrix} = \frac{dy}{ds} \hat{i} - \frac{dx}{ds} \hat{j}, \text{ i.e.,} \]
\[n = \frac{dy}{ds} \hat{i} - \frac{dx}{ds} \hat{j}. \]

Thus,
\[\vec{F} \cdot \vec{n} = (M \hat{i} + N \hat{j}) \cdot \left(\frac{dy}{ds} \hat{i} - \frac{dx}{ds} \hat{j} \right) \]
\[= M \cdot \frac{dy}{ds} - N \cdot \frac{dx}{ds} \rightarrow \]
\[\oint \vec{F} \cdot \vec{n} \, ds = \oint (M \frac{dy}{ds} - N \frac{dx}{ds}) \, ds \rightarrow \]
Flux = \int_{c} M \, dy - N \, dx

= \int_{a}^{b} \left(M \frac{dy}{dt} - N \frac{dx}{dt} \right) \, dt