Unit Tangent Vector, Unit Normal Vector, Arc Length, Curvature

position vector: \(\vec{r}(t) = f(t) \hat{i} + g(t) \hat{j} + h(t) \hat{k} \)

velocity vector: \(\vec{v}(t) = f'(t) \hat{i} + g'(t) \hat{j} + h'(t) \hat{k} \)

acceleration vector: \(\vec{a}(t) = f''(t) \hat{i} + g''(t) \hat{j} + h''(t) \hat{k} \)

\[|\vec{v}(t)| = \sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2} \]

Recall: (Arc Length) Let curve \(C \) be determined by vector function \(\vec{r}(t) \). The arc length \(S \) for \(t = a \) to \(t = b \) is

\[S = \int_a^b \sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2} \, dt \]

\[= \int_a^b |\vec{v}(t)| \, dt \]
Def: Let $\vec{r}(t)$ be a vector function which plots a curve C in space. The unit tangent vector for $\vec{r}(t)$ is

$$\vec{T}(t) = \frac{\vec{v}(t)}{|\vec{v}(t)|}$$

Note: 1.) $\vec{T}(t)$ points in the direction of motion along C. 2.) $\vec{T}(t)$ is a unit vector.

Notation:

$$\vec{T}(t) = \frac{\vec{v}(t)}{|\vec{v}(t)|} = \frac{d}{dt} \frac{\vec{r}(t)}{ds}$$

(speed $= \frac{ds}{dt} = |\vec{v}(t)|$)

$$= \frac{d\vec{r}(t)}{dt} \cdot \frac{dt}{ds}$$

(assume time $t = t(s)$ is a function of arc length s.)

$$= \frac{d}{ds} \vec{r}(t(s))$$

There are situations where we may want to discuss vector...
function \(\vec{r}(t) = \vec{r}(t(s)) \) as a function of its arc length \(s \).

Def: Let \(\vec{r}(t) \) be a vector function and \(\vec{T}(t) \) its unit tangent vector. The principal unit normal vector for \(\vec{r}(t) \) is

\[
\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|}.
\]

Theorem:

a.) \(\vec{N}(t) \) is a unit vector.

b.) \(\vec{N}(t) \) is normal to the path \(C \) determined by \(\vec{r}(t) \), i.e., \(\vec{N}(t) \) is orthogonal to \(\vec{T}(t) \).

c.) \(\vec{N}(t) \) points in the direction that curve \(C \) is turning.

Proof:
a.) Obvious.
b.) \(\vec{T}(t) \) is a unit vector \(\implies |\vec{T}(t)| = 1 \); also \(|\vec{T}(t)|^2 = \vec{T}(t) \cdot \vec{T}(t) = 1^2 = 1 \implies \vec{T}(t) \cdot \vec{T}(t) = 1 \implies \vec{T}'(t) \cdot \vec{T}(t) + \vec{T}(t) \cdot \vec{T}'(t) = 0 \implies \vec{T}'(t) \cdot \vec{T}(t) = 0 \implies \vec{T}'(t) \perp \vec{T}(t) \implies \vec{T}'(t) \perp \vec{T}(t) \implies \vec{N}(t) \perp \vec{T}(t) \).
c. \[T'(t) = \lim_{h \to 0} \frac{T(t+h) - T(t)}{h} \]
(turning right)

\[
\begin{align*}
\overrightarrow{T}(t) & \quad \overrightarrow{T}(t+h) \\
\overrightarrow{n}(t) & \quad \overrightarrow{n}(t+h) \\
(0,0,0) & \\
\end{align*}
\]

\[
\begin{align*}
\overrightarrow{T}(t) - \overrightarrow{T}(t+h) & \quad \text{points right} \\
\overrightarrow{T}(t+h) - \overrightarrow{T}(t) & \quad \text{points left} \\
\end{align*}
\]

Curvature

Def: Let \(\overrightarrow{n}(t) \) be a vector function and \(\overrightarrow{T}(t) \) its unit tangent vector. The curvature of the path \(C \) is

\[\kappa = \left| \frac{d \overrightarrow{T}}{ds} \right| \]
Note that
\[K = \left| \frac{d\vec{T}}{ds} \right| = \left| \frac{d\vec{T}}{dt} \cdot \frac{dt}{ds} \right| = \left| \vec{T}'(t) \cdot \frac{1}{ds/dt} \right| = \frac{1}{|\vec{V}(t)|} \cdot |\vec{T}'(t)| . \]

Formula for Computing Curvature:
\[K = \frac{1}{|\vec{V}(t)|} \cdot |\vec{T}'(t)| \]

Fact: The curvature of a circle of radius \(a \) is \(K = \frac{1}{a} \).

Def: The circle of curvature at a point \(P \) on path \(C \) (in 2D-space) is the circle in the plane that

1.) is tangent to the curve at \(P \) (has same tangent line)
2.) has the same curvature that path \(C \) has at \(P \)
3.) lies toward the concave (inner) side of path \(C \)