Math 22A Kouba Least Squares Solutions to an Unsolvable Linear System $A\vec{x} = \vec{b}$

<u>DEFINITION</u>: The vector space \mathbb{R}^n together with the "dot product" operation is called a real inner product space.

<u>**RECALL:</u>** Let A be an $m \times n$ matrix.</u>

 $dimension(column \ space \ of \ A) = dimension(row \ space \ of \ A)$

= dimension(column space of A^{T})

 $= dimension(row space of A^T)$

II.)

I.)

column space of
$$A = row$$
 space of A^T

FACTS:

$$(null space of A) \perp (row space of A) \longrightarrow$$

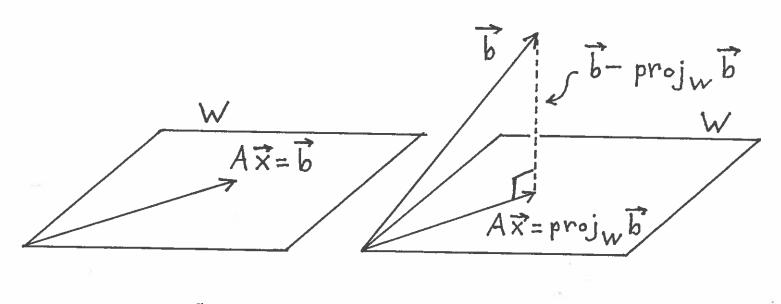
(null space of
$$A^T$$
) \perp (row space of A^T) \longrightarrow

(#) (null space of A^T) \perp (column space of A) (by II.)

From Fact (#) we can conclude the following:

If
$$\vec{z} \in (\text{column space of } A)^{\perp}$$
 \longrightarrow
 $\vec{z} \in (\text{null space of } A^T) \longrightarrow$
 $A^T \vec{z} = \vec{0}$

<u>RECALL</u>: A linear system of equations $A\vec{x} = \vec{b}$ is solvable iff $\vec{b} \in (column \ space \ of \ A)$. Thus, if the system $A\vec{x} = \vec{b}$ is NOT solvable, then $\vec{b} \notin (column \ space \ of \ A)$. Let $W = (column \ space \ of \ A)$.



 $A\vec{x} = \vec{b}$ is solvable $A\vec{x} = \vec{b}$ is NOT solvable

We can see from the diagram that for the case where $A\vec{x} = \vec{b}$ is NOT solvable, the "best wrong answer" is $A\vec{x} = proj_w\vec{b}$, the orthogonal projection of \vec{b} onto W, since $proj_w\vec{b}$ is the vector in $W = (column \ space \ of \ A)$ which is "nearest" \vec{b} .

<u>RECALL</u>: The solution \vec{x} to the equation $A\vec{x} = proj_w \vec{b}$ is called the Least Squares Solution to the unsolvable system $A\vec{x} = \vec{b}$. The vector $\vec{b} - proj_w \vec{b} = \vec{b} - A\vec{x}$ is called the Least Squares Error Vector and $\|\vec{b} - proj_w \vec{b}\| = \|\vec{b} - A\vec{x}\|$ is called the Least Squares Error.

We need a process to easily find the Least Squares Solution \vec{x} : We know that $A\vec{x} = proj_w \vec{b}$ and that $A\vec{x} \in (column \ space \ of \ A)$, so that

 $\vec{b} - A\vec{x} \in (column \ space \ of \ A)^{\perp} \longrightarrow$ $\vec{b} - A\vec{x} \in (null \ space \ of \ A^{T}) \longrightarrow$ $A^{T}(\vec{b} - A\vec{x}) = \vec{0} \longrightarrow$ $A^{T}\vec{b} - A^{T}A\vec{x} = A^{T}\vec{0} = \vec{0} \longrightarrow$ $(LS) \qquad A^{T}A\vec{x} = A^{T}\vec{b}$

Memorize equation (LS) and use itsolve it for \vec{x} , the Least Squares Solution to the unsolvable system $A\vec{x} = \vec{b}$. We have proved the following theorem.

THEOREM 6.4.2 For every linear system $A\mathbf{x} = \mathbf{b}$, the associated normal system

$$A^{T}A\mathbf{x} = A^{T}\mathbf{b} \tag{5}$$

is consistent, and all solutions of (5) are least squares solutions of $A\mathbf{x} = \mathbf{b}$. Moreover, if W is the column space of A, and x is any least squares solution of $A\mathbf{x} = \mathbf{b}$, then the orthogonal projection of \mathbf{b} on W is

$$\operatorname{proj}_{W} \mathbf{b} = A\mathbf{x} \tag{6}$$

THEOREM 6.4.3 If A is an $m \times n$ matrix, then the following are equivalent.

- (a) The column vectors of A are linearly independent.
- (b) $A^{T}A$ is invertible.

THEOREM 6.4.4 If A is an $m \times n$ matrix with linearly independent column vectors, then for every $m \times 1$ matrix **b**, the linear system $A\mathbf{x} = \mathbf{b}$ has a unique least squares solution. This solution is given by

$$\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b} \tag{9}$$

Moreover, if W is the column space of A, then the orthogonal projection of \mathbf{b} on W is

 $\operatorname{proj}_{W} \mathbf{b} = A\mathbf{x} = A(A^{T}A)^{-1}A^{T}\mathbf{b}$ (10)