The Wronskian is a tool for determining if functions in a vector space are linearly independent.

Definition: Let \(f_1, f_2, f_3, \ldots, f_n \) be \(n-1 \) times differentiable functions. The **Wronskian** (named after Jozef Hoene de Wronski) of \(f_1, f_2, f_3, \ldots, f_n \) is the determinant

\[
W(x) = \det \begin{pmatrix}
 f_1(x) & f_2(x) & \cdots & f_n(x) \\
 f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\
 f''_1(x) & f''_2(x) & \cdots & f''_n(x) \\
 \vdots & \vdots & \ddots & \vdots \\
 f^{(n-1)}_1(x) & f^{(n-1)}_2(x) & \cdots & f^{(n-1)}_n(x)
\end{pmatrix}
\]

Example 1: The Wronskian of \(f_1(x) = x^2 + x, \ f_2(x) = 2x + 3, \) and \(f_3(x) = 4 \) is

\[
W(x) = \det \begin{pmatrix}
 x^2 + x & 2x + 3 & 4 \\
 2x + 1 & 2 & 0 \\
 2 & 0 & 0
\end{pmatrix}
\]

\[
= +2 \det \begin{pmatrix}
 2x + 3 & 4 \\
 2 & 0
\end{pmatrix} - 0 \det \begin{pmatrix}
 x^2 + x & 4 \\
 2x + 1 & 0
\end{pmatrix} + 0 \det \begin{pmatrix}
 x^2 + x & 2x + 3 \\
 2x + 1 & 2
\end{pmatrix}
\]

\[
= 2(2x + 3)(0) - (4)(2) = -16
\]

Example 2: The Wronskian of \(f_1(x) = x^2, \ f_2(x) = x^2 + 1, \) and \(f_3(x) = 1 \) is

\[
W(x) = \det \begin{pmatrix}
 x^2 & x^2 + 1 & 1 \\
 2x & 2x & 0 \\
 2 & 2 & 0
\end{pmatrix}
\]

\[
= +1 \det \begin{pmatrix}
 2x & 2x \\
 2 & 2
\end{pmatrix} - 0 \det \begin{pmatrix}
 x^2 & x^2 + 1 \\
 2x & 2
\end{pmatrix} + 0 \det \begin{pmatrix}
 x^2 & x^2 + 1 \\
 2x & 2x
\end{pmatrix}
\]

\[
= 2(2x)(2) - (2x)(2) = 0
\]

Example 3: The Wronskian of \(f_1(x) = \sin^2 x \) and \(f_2(x) = \cos^2 x \) is

\[
W(x) = \det \begin{pmatrix}
 \sin^2 x & \cos^2 x \\
 2 \sin x \cos x & -2 \sin x \cos x
\end{pmatrix}
\]
\[
= -2 \cos x \sin^3 x - 2 \sin x \cos^3 x \\
= -2 \sin x \cos x (\sin^2 x + \cos^2 x) \\
= -2 \sin x \cos x (1) = -2 \sin x \cos x
\]

THEOREM: Let \(f_1, f_2, f_3, \ldots, f_n \) be \(n - 1 \) times differentiable functions. If the Wronskian of these functions is NOT identically zero, i.e., if \(W(x) \neq 0 \), then \(f_1, f_2, f_3, \ldots, f_n \) are linearly independent.

PROOF: Consider the equation

\[
(\#) \quad k_1f_1(x) + k_2f_2(x) + \cdots + k_nf_n(x) = 0
\]

We want to show that these functions are linearly independent, i.e., we want to show that the only solution to equation \((\#)\) is \(k_1 = k_2 = \cdots = k_n = 0 \). Now differentiate equation \((\#)\) \(n - 1 \) times, generating the following \(n \times n \) homogeneous system of equations with variables \(k_1, k_2, \ldots, k_n \):

\[
\begin{align*}
 k_1f_1(x) + k_2f_2(x) + \cdots + k_nf_n(x) & = 0 \\
 k_1f_1'(x) + k_2f_2'(x) + \cdots + k_nf_n'(x) & = 0 \\
 k_1f_1''(x) + k_2f_2''(x) + \cdots + k_nf_n''(x) & = 0 \\
 \quad \vdots & \quad \vdots \\
 k_1f_1^{(n-1)}(x) + k_2f_2^{(n-1)}(x) + \cdots + k_nf_n^{(n-1)}(x) & = 0
\end{align*}
\]

The coefficient matrix for this system of equations is

\[
A =
\begin{pmatrix}
 f_1(x) & f_2(x) & \cdots & f_n(x) \\
 f_1'(x) & f_2'(x) & \cdots & f_n'(x) \\
 f_1''(x) & f_2''(x) & \cdots & f_n''(x) \\
 \vdots & \vdots & \ddots & \vdots \\
 f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x)
\end{pmatrix}
\]

Since the determinant of this matrix \(A \) is the Wronskian of the functions, and we are assuming that \(\det(A) = W(x) \neq 0 \), it follows that matrix \(A \) is invertible and the homogeneous system has only the trivial solution, i.e., \(k_1 = k_2 = \cdots = k_n = 0 \). QED

IMPORTANT NOTE: If the Wronskian \(W(x) = 0 \), then no conclusion can be drawn from the Wronskian Method. The functions could be linearly independent or they could be linearly dependent. See the following two examples.

EXAMPLE 4: Let \(f_1(x) = 2x^2 + 4 \), \(f_2(x) = x^2 \), and \(f_3(x) = 1 \). Show that \(f_1, f_2, \) and \(f_3 \) are linearly dependent by using constants \(k_1, k_2, k_3 \). Show that the Wronskian \(W(x) = 0 \).
EXAMPLE 5: Let $f_1(x) = x^2$ and $f_2(x) = \begin{cases} x^2, & \text{if } x \geq 0 \\ -x^2, & \text{if } x < 0 \end{cases}$. Show that f_1 and f_2 are linearly independent by verifying that f_1 and f_2 are not multiples of each other. Show that the Wronskian $W(x) = 0$.