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where L is a lower triangular matrix with 1's on the main diagonal, D is a diagonal
matrix, and {/ is an upper triangular matrix with 1's on the main diagonal. This is called
the LDU-decomposition (or LD U-fuctorization) of A.

PLU-Decompositions Many computer algorithms for solving linear systems perform row interchanges to re-
duce roundofF error, in which case the existence of an LU-decomposition is not guar-
anteed. However, it is possible to work around this problem by “preprocessing” the
coefficient matrix A so that the row interchanges are performed prior to computing the
LU-decomposition itsell. More specifically, the idea is to create a matrix Q (called a
permutation matrix) by multiplying, in sequence, those elementary matrices that produce
the row interchanges and then execute them by computing the product QA. This product
can then be reduced to row echelon form without row interchanges, so it is assured to
have an LU-decomposition

OA=LU (14)
Because the matrix @ is invertible (being a product of elementary matrices), the systems
Ax =b and QAx = @b will have the same solutions. But it follows from (14) that
the Jatter system can be rewritten as LUx = Qb and hence can be solved using LU/-
decomposition.
It is common to see Equation (14) expressed as

A= PLU (15)
in which P = Q~!. This is called a PLU-decomposition or (PLU-factorization) of A.

Exercise Set 9.1

1. Use the method of Example | and the L{/-decomposition 4 -5 —IO] ["l- = [_ 10]
T
=2 5] =2 1o 1 [ 2 -2 =2 [w] [-4
to solve the system 5. 0 =2 2llxml=1-2
3x, —6x: =0 _—l 5 ZJ | X3 | | [
=2x; + 51'3 =1 - o =
. -3 12 -=6]|x -33
2. Use the method of Example | and the L{/-decomposition 6 | =2 2 xl= 7
3 -6 =3 3 0 o)1 =2 =l 0 l 1] %] -1
2 0 6= 2 4 0f|(0 1 2
ey 7 4 i ey s|loe o 1 * In Exercises 7-8, an LU-decomposition of a matrix A is given.

(a) Compute L~ and U~",

to solve the system . )
{b) Use the result in part (a) to find the inverse of A,

3x) —6xs —3xy = -3

X +6xy=-22 2 =1 3
—dn +Taddng= 3 TA=| 4 2 1|
-6 -1 2
= [n Exercises 3-6, find an LU-decomposition of the coefficient | 0 o)z =1 3
matrix, and then use the method of Example | to solve the sys- A=LU=] 2 1 ol|llo 4 =5
et 3 -1 1]{o o
[ 2 8], [-2]
-t =1 x T 1-2 8. The LU-decomposition obtained in Example 2,

|
|
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9. Let
2 1 -1
A=]|=2 -1 2
2 1 0

(a) Find an LU-decomposition of A.

{b) Express A in the form A = L,DU,, where L, is lower
triangular with I's along the main diagonal, U, is upper
triangular, and D is a diagonal matrix.

(c) Express A in the form A = L,U,, where L; is lower tri-
angular with I's along the main diagonal and L/; is upper
triangular.

10. (a) Show that the matrix

0 1
]
has no LU-decomposition.

(b) Find a PLU/decomposition of this matrix.

In Exercises 11-12, use the given PLU-decomposition of A to
solve the linear system Ax = b by rewriting it as P~'dx = P~'b
and solving this system by LU-decomposition.

[2 01 4
1L b=[1): A=[1 2 2]:
5 31 3
[0 1 o]t o o][1 2 2
A=|1 0 oflo 1 ol]o 1 4|=rLU
00 1|[3 =5 17]]o o 1
3 4 1 2
12 b=|0{; A=]0 2 1]:
6 8 1 8
[1 0 0][¢ 1 2] 1 !
A=]0 0o 1llo -1 4]lo 1 —4|=pPLU
o 1 of[o o 9f[]o o 1

In Exercises 13-14, find the L DU-decomposition of A.

3 -2 6
13.A=[i f] 1. A= |0 2 0
6 28 13

In Exercises 15-16, find a PLU-decomposition of A, and use
it to solve the linear system Ax = b by the method of Exercises 11
and 12.

3 -1 0 =2
15. A=1{3 -1 l|: b= |
)] 2 1 4

0D 3 =2 7
16.A=(1 1 4|;b=| 5
2 2 s )

17, Let Ax = b be a linear system of n cquations in n unknowns,
and assume that A is an invertible matrix that can be reduced
to row echelon form without row interchuanges. How many
additions and multiplications are required to solve the system
by the method of Example 1?

Working with Proofs
18. Let

a b
A=
< ]
(a) Prove: If @ # 0, then the matrix A has a unique LU-
decomposition with 1's along the main diagonal of L.

(b) Find the LU-decomposition described in part (a).

19. Prove: If A is any n x n matrix, then A can be factored as
A = FLU, where L is lower triangular, U/ is upper triangular,
and P can be obtained by interchanging the rows of /, appro-
priately. [Hint: Let U be a row echelon form of A, and Jet
all row interchanges required in the reduction of A to U be
performed first.)

True-False Exercises

TF. In parts (a)-(e) determine whether the statement is true or
false, and justify your answer.

(#) Every square matrix has an LU-decomposition.

(b} If a square matrix A is row equivalent to an upper triangular
matrix U, then A has an LU-decomposition.

(c) IfL,, Ly, ..., Ly aren x nlower triangular matrices, then the
product LyL; - - - Ly is lower triangular.

(d) If an invertible matrix A has an LU-decomposition, then A
has a unique L DU-decomposition.

{e) Every square matrix has a P LU-decomposition.

Working with Technology

T1. Technology utilities vary in how they handle LU-decompo-
sitions. For example, many utilities perform row interchanges to
reduce roundoff error and hence produce PLU-decompositions,
even when asked for LU-decompositions. See what happens when
you use your utility to find an L U-decomposition of the matrix A
in Example 2.

T2. The accompanying figure shows a metal plate whose edges arc
held at the temperatures shown. It follows from thermodynamic
principles that the temperature at each of the six interior nodes will
eventually stabilize at & value that is approximately the average of
the temperatures at the four neighboring nodes. These are called
the sready-state temperarares at the nodes. Thus, for example, if
we denote the steady-state temperatures at the interior nodes in
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which is called column-vector form. The choice of notation is often a matier of taste or
convenience, bui sometimes the nature of a problem will suggest a preferred notation.
Notations (15), (16), and (17) wilt all be used at various places in this text.

Application of Linear Combinations to Color Models

Colors on computer monitors are commonly based on what is called
the RGB color model. Colots in this system are created by adding
together percentages of the primary colors red (R), green (G), and
biue (B). One way to do this is to identify the ptimary colors with
the vectors

r=(1,0,0) (purered),

gE= ©1, 0) (pure graen),

b= (0,0,1) (pureblue)
in R? and to create all other colors by forming linear combinations
of r, g, and b using coefficients between 0 and 1, inclusive; these
coefficients represent the percentage of each pure color in the mix.

The set of all such color vectors is called RGB space or the RGB
color cube (Figure 3.1.14). Thus, each color vector ¢ in this cube is
expressible as a linear combination of the form

e= kit + kg + kb
= ki (1,0, 0) + k2(0, 1, 0) + k3(0, 0, 1)
= (ky, k2, k3)

where 0 < k; < 1. Asindicated in the figure, the comers of the cube
represent the pure primary colors together with the colors black,
white, magenta, cyan, and yellow. The vectors along the diagonal
running from black to white correspond to shades of gray.

Cyan
©,0 @ 1,1)
Magenta White
1.0,1) (LLD
Black Green
(0,0,0) 0,1,0)
Red . Yellow
P Figure 3.1.14 {1,0,0) 1,0
Exercise Set 3.1
R
& In Exercises 1-2, find the components of the vector. = In Exercises 3—4, find the components of the vector P P, =
: 3. () P(3,5). P(2,8) (b) Pi(5, -2, 1), P:(2,4,2)
L (a) 4 (b} ?
L o (1.9) (0,0, 4} 4. () P(—6,2), Pi(—4,-1) (b) A(0,0,0), Py{(-1,6,1)
I 5. (a) Find the terminal point of the vector that is equivalent 1o
i u = (1, 2) and whose initial point is A(l, 1).
i )y (b) Find the initia! point of the vector that is equivalent to
5 41 —— .
L s 4 g X u = (1, 1, 3) and whose terminal point is B(—1,-1,2).
- X 2,3,0 , o , . .
{ ) 6. (a) Find the initial point of the vector that is equivalent to
2. (a) N’ (b) u = (1, 2) and whose terminal point is B(2, 0).
| ©.4.4 (b) Find the terminal point of the vector that is equivalent to
B u = (1, 1, 3) and whose initial point is A(0, 2, 0).
(-3,3) 23 (3,04 -
“ ' 7. Find an initial point P of a nonzero vector u = PQ with ter-
r J minal point Q(3, 0, —5) and such that
B —— N
L4 L, X {a) u has the same direction as v = (4, =2, —1).
" (b} uis oppositely directed to v = (4, -2, -
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r

2)
1)

to
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8. Find a terminal point { of a nonzero vector u = PQ with
initial point P(—1, 3, —=3) and such that

(a) u has the same direction as ¥ = (6, 7, —3).
(b) u is oppositely directed to v = (6, 7, =3).
9 Letu=(4, -1}, v=1{(0,5), and w = (=3, =3). Find the
components of
(@) ut+w (b) v—=13u
() 2(u — 5w) (d) 3v—2(u+ 2w)

10, Let u=(-3,1,2), v=1(4,0,-8), and w= (6, ~1, —4),
Find the components of

@ v—w (b} 6u+ 2v

(©) =3 (v—8w) (d) (Qu—Tw)— (B8v+u)
II, Letu=(-3,2,1,0),v= (4,7, -3, 2), and

w = (5, -2, 8, 1). Find the components of

@ v—w (b) —u+ (v — 4w)

(c) 6(u—3v) (d) (6v—w) — (du+v)

12, Letu=(1,2,-3,5,0),v=(0,4,—-1,1,2), and
w = (7,1, =4, =2, 3). Find the components of

(@) v+w (b) 3(2u—-v)
(c} (3u=—v)—(2u-4w) {d) 3(w—5v+2u)+v
13. Let u, v, and w be the vectors in Exercise 11. Find the com-

ponents of the vector x that satisfies the equation
Ju+v=2w=3x+2w.

14. Let u, v, and w be the vectors in Exercise 12. Find the com-
ponents of the vector x that satisfies the equation
=-v+x=Tx+w

15. Which of the following vectors in RS, if any, are parallel to
u=(-2,1,0,3,51)
(a) (4,2,0,6,10,2
(b) (4, =2,0, -6, -10, =2)
(c) (0,0,0,0,0,0)

16. For what value(s} of ¢, if any, is the given vector parallel to
u=4, =17
(a) (8r, -2) (b) (8, 20) (© (1,13

I7. Letu= {1, 1,3, 5)andv = (2, 1,0, =3). Find scalarsa and
b sothatau - bv = (1, —4, 9, 18).

18. Letu=(2,1,0,1,~1) and v = (=2, 3, 1,0, 2). Find scalars
a and b so that au + bv = (-8, 8,3, -1, 7).

In Exercises 19-20, find scalars ¢y, c1, and ¢; for which the
equation is satisfied.
19, (1, =L+ (3,2, 1+ 600, 1,4) =(=1,1, 19)

20. ¢;(—1,0,2) + 32,2, =D + c3(1, =2, 1) = (=6, 12,4)

21. Show that there do not exist scalars ¢, ¢, and c; such that
€] (_20 9. 6) + C:(—J, 2- l) + C](l' 7v 5) = (0. 51 4)

24,

26,

7.

28.

29.

30.
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. Show that there do not exist scalars ¢, ¢;, and ¢; such that

a{l,0, 1,0+ (1.0, -2, D +63(2,0,1,2) = (1, =2, 2,3)

» Let P be the point (2, 3, —=2) and @ the point (7, —4, 1).

(z) Find the midpoint of the line segment connecting the
points P and Q.

(b) Find the point on the line segment connecting the points
P and Q that is ? of the way from P 1o Q.

In relation to the points P, and P; in Figure 3.1.12, what can
you say about the terminal point of the following vector if its
initial point is at the origin?

—_— W o
u= 0P| + i(OP; e 0P|)

. In each part, find the components of the vectoru + v+ w.

(@) 3 ) Ly
» I
/ h, \
w) N Ao LAy
/
.E X
e 7 ke
/ L] 4 (11 AN
A8} ay BERERS
e {
Y[ T~

Referring to the vectors pictured in Exercise 25, find the com-
ponents of the vectoru — v+ w.

Let P be the point (1, 3, 7). If the point (4, 0, =6) is the mid-
point of the line segment connecting P and , what is 7

If the sum of three vectors in 8? is zero, must they lie in the
same plane? Explain.

Consider the regular hexagon shown in the accompanying fig-
ure.

(a) What is the sum of the six radial vectors that run from the
center to the vertices?

(b) How is the sum affected if each radial vector is multiplied
by 37

(c) What is the sum of the five radial vectors that remain if a
is removed?

(d) Discuss some variations and generalizations of the result
in part (c).

d 4 Figure Ex-29

What is the sum of all radial vectors of a regular n-sided poly-
gon? (See Exercise 29.)
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Working with Proofs
31. Prove parts (a), {¢), and (d) of Theorem 3.1.1.

32. Prove parts {¢)-(h) of Theorem 3.1.1.
33. Prove parts (a)~{c) of Theorem 1.1.2,

True-False Exercises

TF. In parts (a)-(k) determine whether the statement is true or
false, and justify your answer.

(8) Two equivalent vectors must have the same initial point.
{(b) The vectors (a, b) and (a, b, 0) are equivalent.

(c) IT k is & scalar and v is a vector, then v and kv are parallel if
and onlyifk > 0.

(d) The vectors v + (u+ w) and (w -+ v) +uare the same.

(e fu+v=u+wthenv=w

]y

Norm,

T ——— i SR G TIRE R 2

3.2

(f) 1f @ and b are scalars such that qu 4 by =0, thenu and v are
parallel vectors.

() Collinear vectors with the same length are equal.

() If (a, b, €} + (x, ¥, 2) = (x, ¥, 2), then (a, b, ¢) must be the
ZEro veclor.

(i) If% and m are scalars and u and v are vectors, then
k+m){u+v)=ku+mv
(j) If the vectors v and w are given, then the vector equation
v—x)=5x—4dw+v
can be solved for x.

(k) The linear combinations en v, + a;v; and byvy + by¥a can only
beequal ifa) = b and ax = by.

Dot Product, and Distance in R"

Norm of a Vector

In this section we will be concerned with the notions of length and distance as they relate to
vectors. We will first discuss these ideas in R* and R? and then extend them algebraically
o R".

In this text we will denote the length of a vector v by the symbol ||v]|, which is read as
the norm of v, the length of v, or the magnitude of v (the term “norm” being a common
mathematical synonym for length). As suggested in Figure 3.2.14, it follows from the
Theorem of Pythagoras that the norm of a vector (v, v7) in R? is

vl = Vi + 43 (1)

Similarly, for a vector (v;, va, v3) in R3, it follows from Figure 3.2.1b and two applica-
IVi? = (OR)? + (RPY = (00)* + (QRY + (RP)* = v + ] + 3

vl = vvi +v3 +v3 (2)

Motivated by the pattern of Formulas (1) and (2), we make the following definition.

., Up) is a vector in R", then the norm of v (also called
the length of v or the magnitude of v) is denoted by {|v||, and is defined by the formula

y
(v, v
lIvl :,,2
I &
I v,
(@ tions of the Theorem of Pythagoras that
Z
Pluy, vy, b3} ind hence that
Il |
| ¥
s} 1 —
B \“"\.gi, 78
x /T T R
2] DEFINITION 1 Ifv = (v, va, ..
A Figure 3.2.1

vl = vVeE 4 o4 +02 3)
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Thus, if the row vectors of A are r,r2,....Im and the column vectors of B are ¢,
€2, ..., Cn, then the matrix product AB can be expressed as
rl.c| rl'c2 e rl'cn
rpec¢ Fpe€ -+ M2°Cy
AB = . . . (28)
Fm+€ FpeC - TmCy

Exercise Set 3.2
In Exercises -2, find the norm of v, and a unit vector that is
oppositely directed tov.

1.(a) v=(2,2,2) b)v=(1.,0213

2.@v=(1,-12) ) v=(-2,33-1)

~ In Exercises 3—4, evaluate the given expression with
u={(2 -2.3),v=(1,-3,4), and w = (3,6, —4). =

3. (a) llu+vl (b) llull + (vl

(©) I-2u+2v| (d) 130 — 5v+w|
4. (@) fut+v+wl ®) lu—vl

(©) 113vli - 3livll (@) full — vl

In Exercises 5-6, evaluate the given expression with
u=(-2,-1,4,95,v=(3,1,-57), andw=(-6,2,1,1}1

5. (a) [I3u — 5v+ wl] (b) N3ull — 5iivil + [iwl)
() [I=lullvy

6. (@) full +I=2vll + [=3w]  (6) 0o = viw]

7. Letv = (—2, 3,0, 6). Find all scalars k such that [|kv]| = 5.

8. Letv = (i, 1, 2, =3, 1). Find all scalars k such that
lfevl] = 4.

4

In Exercises 9-10, findu-v,u-u, andv.v.
9, (Mue=(31,4, v=(2,2,—-4)
(byn=(1,1,4,6), v=1(2,-2,3,-2}

10, (@) u=(1,1,-2,9, v=(-1,0, 51
Mu=(2,-1,1,0,-2), v=1(1,2,2,2,1)
In Exercises 11-12, find the Euclidean distance betweenwand ¥

and the cosine of the angle between those vectors. State whether
that angle is acute, obtuse, or 90°.

1@ u=(3,323,v=(1.04)
(b) u= (0- _2r -lv 1)0 ¥y= (_3s 2|4v4)
12. (a) u= (1. 2; —3p0)| v= (5| lv2v _2)
Mu=(0,11,12,v=(210-1.3)

13. Suppose that a vector & in the xy-plane has a length of 9 units
and points in a direction that is 120° counterclockwise from

the positive x-axis, and a vector b in that plane has a length of
5 units and points in the positive y-direction. Finda - b.

14. Suppose that a vector a in the xy-plane points in a direction
that is 47° counterclockwise (rom the positive x-axis, and a
vector b in that plane points in a direction that is 43° clock-
wise from the positive x-axis. What can you say about the
value of a « b?

In Exercises 15-16, determine whether the expression makes
sense mathematically, If not, explain why.

15. (@) u-(v-w) (b) u: (v+w

) flu-v| (d) (u-v)—{luj
16. () fjull - [iv] (b} (u-v)—w
© (w-vy—k dyk-u

In Exercises 17-18, verify that the Cauchy-Schwarz inequality
holds.

17. @ u=(=3,1,0), v=(2,-1,3)
M u=(0,221, v=(L1,1,1)

18. (u=@1,1),v=(1,2,3)
(b) u= (1,2, l,Z, 3). y= (Ov lr lrsv ‘2)

19. Letry = (xq, Yo) bea fixed vector in R?. Ineach part, describe
in words the set of all vectors r == (x, y) that satisfy the stated
condition.

@ fle=rll=1 ®iIr—rl=1l (© lt—rl >1

20. Repeat the directions of Exercise 19 for vectors r = (x, y,2)
and ry = (xo, ¥, 20) in R*.

Exercises 21-25  The direction of a nonzero vector vinan xyz-
coordinate system is completely determined by the angles , 8,
and y between v and the standard unit vectors i, j, and k (Fig-
ure Ex-21). These are called the direction angles of v, and their
cosines are called the direction cosines of v.

21. Use Formula (13) to show that the direction cosines of a vector
v = (v, vy, v3) in R are

U2 v
osf=—, cosy=_—
vl

3
fIvil

U
cosS¥ = —
vl
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22, Use the result in Exercise 21 to show that
cosa 4 cos® B +cos’y = |
23. Show that two nonzero vectors v, and v; in R® are orthogonal
if and only if their direction cosines satisfy
cosa, cosas +cos B cos P t+cosycosya =0
24, The accompanying figure shows a cube.

(a) Find the angle between the vectors d and u to the nearest
depree.

{b) Make a conjecture about the angle between the vectors
d and v, and confirm your conjecture by computing the
angle.

-4 Figure Ex-24

25, Estimate, to the nearest degree, the angles that a diagonal of a
box with dimensions 10 cm x 15 ¢ x 25 cm makes with the
edges of the box.

26. If ||v] = 2 and |lw|| = 3, what are the largest and smallest val-
ues possible for |v— w||? Give a geometric explanation of
your results.

27. What can you say about two nonzero vectors, uw and v, that
satisfy the equation |ju + v|| = |[uf] + ]|v||?

28, (a) What relationship must hold for the point p = (a, b, c)
to be equidistant from the origin and the xz-plane? Make
sure that the relationship you state is valid for positive and
negative values of a, b, and c.

(b) What relationship must hold for the pointp = (a, b,c) to
be farther from the erigin than from the xz-plane? Make
suse that the relationship you state is valid for positive and
negative values of a, b, and c.

29. State a procedure for finding a vector of a specified length m
that points in the same direction as a given vector v.

30. Under what conditions will the triangle inequality {Theo-
rem 3.2.54) be an equality? Explain your answer geometri-
cally.

Exercises 31-32  The effect that a force has on an object de-
pends on the magnitude of the forceand the direction in which it is
applied. Thus, forces can be regarded as vectors and represented
as arrows in which the length of the arrow specifies the magnitude
of the force, and the direction of the arrow specifies the direction in
which the force is applied. 1t is a fact of physics that force vectors
obey the parallelogram law in the sense that if two force vectors
F, and F; are applied at a point on an object, then the effect is
the same as if the single force Fy + F; (called the resultant) were
applied at that point (see accompanying figure). Forces are com-
monly measured in units called pounds-force (abbreviated 1bf} or
Newtons (abbreviated N).

F;+F;

The single force

F| + Fz has the
same effect as the
two forces Fy ang F.

31. A particle is said to be in static equilibrium if the resultant of
ail forces applied to it is zero. For the forces in the accompa-
nying figure, find the resultant F that must be applied to the
indicated point to produce static equilibrium. Describe F by
giving its magnitude and the angle in degrees that it makes
with the positive x-axis.

32. Follow the directions of Exercise 31,

1016

120N IS0N

81b 60° 45° 100N
-4

A T
A I

A Figure Ex-31 A Figure Ex-32

Working with Proofs
33, Prove parts {(a) and (b) of Theorem 3.2.1.

34, Prove parts (a) and (c) of Theorem 3.2.3.

35. Prove parts (d) and (¢) of Theorem 3.2.3.

True-False Exercises

TF. In parts (a)-{j} determine whether the statement is true or
false, and justify your answer.

g

N T T
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{n) If each component of a vector in R* is doubled, the norm of
that vector is doubled.

(b) In R?, the vectors of norm 5 whose initial points are at the ori-
gin have terminal points lying on a circle of radius 5 centered
at the origin.

(c) Every vector in R has a positive norm.

(d) Ifvisa nonzero vector in R”, there are exactly two unit vectors
that are parallel to v,

(¢) Iflull =2, vl =1,andu-v=1, then the angle between u
and v is 7r/3 radizns.

(f) The expressions (u-v) + w and u + (v + w) are both meaning-
ful and equal to each other.

(g) fu-v=u-w,thenvy=w.
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(h) [Fu.v=0,thencitheru==0orv=0

(i) In R2, if u lies in the first quadrant and v lies in the third
quadrant, then u - v cannot be positive.

(j) Forall vectorsu, v, and win R®, we have

lu+v+wl < [lull + vl -+ lIwl

Working with Technology

T1. Let u be a vector in R'® whose ith component is i, and let v
be the vector in R'® whose ith component is 1/(i + 1). Find the
dot product of uand v.

“F2. Find, to the nearest degree, the angles that a diagonal of a box
with dimensions 10 em x 11 cm x 25 cm makes with the edges of
the box.

T | o i H g T b T A T T

o = n a7

3.3 Orthogonality

In the last section we defined the notion of “angle” between vectors in R”. In this section
we will focus on the notion of “perpendicularity.” Perpendicular vectors in R" play an
jmportant role in a wide variety of applications.

Orthogonal Vectors

Recali from Formula (20) in the previous section that the angle & between two nonzero

vectors u and v in R" is defined by the formula

- )
S\ vl

1t follows from this that § = /2 if and only if u - v = 0. Thus, we make the following

definition.

10 every vector in R".

DEFINITION 1 Two nonzero vectors u and v in R" are said to be erthogonal (or
perpendicular) if u - v = 0. We will also agree that the zero vector in R" is orthogonal

> EXAMPLE 1 Orthogonal Vectors
(@) Showthatu={-2,3,1,andv={(1,2, 0, —1) are orthogonal vectors in R*.

(b) Let § = {i, j. k) be the set of standard unit vectors in R3. Show that each ordered
pair of vectors in S is orthogonal.

Solution{a) The vectors are orthogonal since
p-v=(=2)(1)+ M2+ (HO) + H(-)=0

Solution (b} [t suffices to show that

j-j=i-k=j-k=0
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V..
W 4

A Figure 3.3.7 The distance

between the parallel planes V

and W is equal to the distance
between Py and W.

-—1——a %

Exercise Set 3.3

The third distance problem posed above is to find the distance between two parallel
planes in R3. As suggested in Figure 3.3.7, the distance between a plane V and a plane
W can be obtained by finding any point Py in one of the planes, and computing the
distance between that point and the other plane. Here is an example.

> EXAMPLE 8 Distance Between Parallel Planes
The planes
x+2y=2z=3 and 2x+4y—4:=17

are parallel since their normals, (1, 2, ~2) and (2, 4, —4), are parallel vectors. Find the
distance between these planes,

Solution To find the distance D between the planes, we can select an arbitrary point in
one of the planes and compute its distance to the other plane. By setting y = z = 0 /in
the equation x 4 2y — 2z = 3, we obtain the point Py(3, 0, 0) in this plane. From (16),
the distance between P; and the plane 2x -4y — 4z = 7 is

12(3) +4(0) + (—4)(0) - 7|

V2 +42 4+ (—4)2

D= «

| —

In Exercises 1-2, determine whether u and v are orthogonal 12, x — 2y + 3z =4, —2x + Sy + 4z = —1

veclors.
L@u=(614) v=(2,0,=3)
(Byu=(0,0-N, v=(,1,1

©Du=(3-21,3,v=(-4,1,-3,7

In Exercises 13-14, find [ projpull.
13. (a) u= (]$ —2), a= (_4v -3)
(byu=(3,0,4), 8 =(2,3,3)

(d) u=(5-4,0,3), v= (4,1, -3,7) M. (a) u=(5,6), a=(2,-1)

2. (@u=(23), v=(5-=-7
(Byu={,0,1), v=(0,0,0)
u=(,-54,v=(333

buv=(3,-2,6), a=(1,2,-7)

In Exercises 15-2(}, find the vector component of u along a and
the vecior component of u orthogonal to a.

du=(41-23), v=(-1,53,1) 15, u=(62), a=(3,-9) 16. u=(-1,-2), a=(-2,3)

In Exercises 3-6, find a point-normal form of the equation of 17, y = (3,1,=7), a=(1,0,5)
the plane passing through P and having n as a normal.

3 P(-1,3,-2yn=(-2,1,-1)

18.u=(2,0,1),a=(1,23)

4. P(1,1,4); n=(1,9,8) 5 P(2,0,0): n=(0,0,2) B.u=@211,2), a=04-42-2)
6. P(0,0,0); n=(1,2,3) 20.u=(50-37,e=021-1,~1)
In Exercises 7-10, determine whethér the given planes are In Exercises 21-24, find the distance between the point and the
parallel. line.

T.d4x—y+2z=5 and Tx—3y+4z=8

2, (=3,1); dx +3y+4=0

B.x—4y—3:1-2=0 and Ix—12y—97—-7=0 2. (L4 x=3y+2=0

9.2y=8r—4z+5 and x=1lz+1y 23, (2,=5); y=—4x+2

10. (-4,1,2) - (x,»,2)=0 and (8, -2, -4)-(x,»,2)=0 24, (1,8); 3x+y=35

In Exercises 11-12, determine whether the given planes are In Exercises 25-26, find the distance between the point and the

perpendicular.

plane.

1IL3x=y+:z-4=0,x+2:=-1 25,3, 1,=-2 x+2y -2z =




arallel
plane
ng the

d the

ntin
0in
(16),

nd

26, (=1,=1,2); 2x + 5y -6z =4

In Exercises 27-28, find the distance between the given parallel
planes.
27.2x—y—z=5 and —dx+2y+2=12

8. 2x—y4+z=1 and x =y +z=-I

29. Find & unit vector that is orthogonal to bothu = (1,0, 1) and
v={(0,1,1).

30, (2) Show that v= (a,b) and w = (-b,a) are orthogonal
vectors.

(b) Use the result in part (a) to find two vectors that are or-
thogonal to v = (2, =3).

(c) Find two unit vectors that are orthogonal tov = (—3,4).

31. Do the points A(!, 1, 1), B(=2,0,3),and C(=3, -1, 1) form
the vertices of a right triangle? Explain.

32. Repeat Exercise 31 for the points A(3,0, 2), B(4,3,0), and
C(8,1,=1).

33. Show that if v is orthogonal to both w; and ws, then v is or-
thogonal to kyw, + k3w, for all scalars &) and £;.
34. Is it possible to have proj,u = proj,a? Explain.

Exercises 35-37  In physics and engineering the work W per-
formed by a constant force F applied in the direction of motion (o
an object moving a distance d on a straight line is defined to be

W = |[Flld (force magnitude 1imes distance)

In the case where the applied force is constant but makes an angle
# with the direction of motion, and where the object moves along

a line from a point P to a point G, we call Fé the displacement
and define the work performed by the force to be

— —
W =F-PQ = [F|| Pl cosd

(see accompanying figure). Common units of work are ft-Ib {foot
pounds) or Nm (Newton meters).

IF_»F

|Fllcos g

ke 17Gl 5

: V-Vork = (||F|| cc;; 9) -III‘_’-EIZH—!

35. Show that the work performed by a constant force (not nec-
essarily in the direction of motion) can be expressed as

— *
W = | PQlllproiz; F

and explain when the + sign should be used and when the —
sign should be used.
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36. As illustrated in the accompanying figure, a wagon is pulled
horizontally by exerting a force of 10 Ib on the handle at an
angle of 60° with the horizontal. How much work is dene in

moving the wagon 50 ft?
F
101b .
- 501t |

37. A sailboat travels 100 m due north while the wind exerts a
force of 500 N toward the northeast. How much work does
the wind do?

Working with Proofs

38. Letuand v be nonzero vectorsin 2- or 3-space, and let & = ||ul|
and [ = [v]. Prove that the vector w = {u + kv bisects the
angle between nand v,

39, Prove part (a) of Theorem 3.3.4.

True-False Exercises

TF. In parts (a)-(g) determine whether the statement is true or
false, and justify your answer.

(a) The vectors (3, —1,2) and (0, 0, 0) are orthogonal.

(b) If u and v are orthogonal vectors, then for all nonzero scalars
k and m, ku and mv are orthogonal vectors.

(c} The orthogenal projection of u on a is perpendicular to the
vectot component of u orthogonal to a.

(d) ifaand bare orthogonal vectors, then for every nonzero vector
u, we have
proj, (projg(u)) =0

(e) If n and u are nonzero vectors, then
proj, (proj,(u)) = proj,(v)

(f) If the relationship
Proj,u = proj,v

holds for some nonzero vector a, thenu = v.
{g) For all vectors u and v, it is true that

fln -+ vIl = lufl + {ivl

Working with Technology
T1. Find the lengths of the sides and the interior angles of the
triangle in R* whose vertices are

P(2,4,2,4,2), Q(6.4.4,4,6), R(.7,57.2)

T2. Express the vector n=(2, 3, 1, 2) in the form u = w; 4wy,
where w, is a scalar multiple of a = (-1, 0, 2, 1) and w, is orthog-
onil to o,
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2.1 Determinants by Cofactor Expansion 111

" Exercise Set 2.1

In Exercises 1-2, find all the minors and cofuctors of the ma-
trix A,

1 =2 1 T2
. A= 6 7 -1 2A=1|3 3 6
-3 1 4] 01 4
3. Let
4 —1 1 6
0o 0 -3 3
A= 4 1 0 14
4 1 3 2
Find

(8) Mu and C'__'|.
(c) M:l and C::.

(b) Mz] and Cz;.
(d) M2| and Cz

4, Let
203 =1 1
-3 2 0 3
A= 3 =2 1 0
3 =2 1 4
Find

(a) M_u and C_]].
(c) M4| and C.||.

(b) My and Cys.
(d) M14 and Czq.

= In Exercises 5-8, evaluate the determinant of the given matrix.
If the matrix is invertible, use Equation (2} to find its inverse.

R R I

In Exercises 9~14, use the arrow technique to evaluate the de-
terminant. 4

el A—-4 4 0
17. A= A1 18. A= -1 » 0
- 0 0 A-35

19. Evaluate the determinant in Exercise 13 by a cofactor expan-

sion along
(a) the first row. (b} the first column.
(d) the second column.

() the third column.

{c) the second row.
(e) the third row.

20. Evaluate the determinant in Exercise 12 by a cofactor expan-
sion along

(b) the first column.
{d) the second column.
() the third column.

(a) the first row.
(c) the second row.
(e) the third row.

2 1n Exercises 21-26, evaluate det(A) by a cofactor expansion
along a row or column of your choice,

-3 0o 7 303 1
A.4=| 2 5 1 2.4=|1 o0 -4
-t 0 5 1 -3 5
(1 & &2 [k+1 k=1 7
23.A=|1 k & M A=| 2 k-3
1 &k & | 5 k41 ok
3 3 0 5
2 2 0 =2
25 A 4 1 -3 0
2 10 3 2
"4 0 0 1 0
3 03 3 <1 0
6. A=|1 2 4 2 3
9 4 6 2 3
2 2 4 2 3

In Exercises 27-32, evaluate the determinant of the given ma-
trix by inspection,

5. 4= "2
i

I
A+4]

16. A =

2 71 6
a—3 5
5. 1", ) 0. s 1 -2
“ g 4
-2 4 1 2
|3 s -7 12zl 3 o -5
I 6 2 7 2
3 0 0 c -4 3
3.2 -t 5 14, 2 1
[ 9 —4 4 c—1 2

A=4 0
0 A
0 3 A=

0

T~

In Exercises 15-18, find all values of A for which det(4) = 0.

;|

[1 0 0] [2 0 0
7.10 -1 0 28.[0 2 0
0 0 1 0 0 2
0 0 0 0] I
1 2 00 02 2 2
29'0430 3'0'0033
1 2 3 8 [0 0 0 4




1 2 7 -3 -3 0 0 0
0 1 -4 1 1 2 0 0
3. 6o o0 2 3z 0 10 -1 0
0O 0 0 3 100 200 -23 3

33. In each part, show that the value of the determinant is inde-

pendent of &,
sinf cosé
{a) .
—cos5f sin€
sind cosf 0
(b) —cosf sinf 0]
sinf —cos®  sinf +cosf l|
34, Show that the matrices
a b d e
A= and B =
commulte if and only if
b a-c =0
e d—f|
35. By inspection, what is the relationship between the following
determinants?
a b ¢ a+A b ¢
di=ld 1 f| and dy=| d I f
g 0 1 g 0o 1
36. Show that
1 ]tr(A) 1
det(A) = <
A =3 A

for every 2 x 2 matrix A.

37. What can you say about an nth-order determinant all of whose
entries are 1? Explain.

38. What is the maximum number of zeros thata 3 x 3 matrix can
have without having a zero determinant? Explain.

39. Explain why the determinant of a matrix with integer entries
must be an integer.

Working with Proofs

40. Prove that (x1, y), (xs, ¥2), and (x3, y3) are collincar points

if and only if
E Y. I
x: v 1|=0
oy |

—

41. Prove that the equation of the line through the distinct points
{a,. b) and (4., bs+) can be wrilten as

x ¥y 1
a bg I|=0
as bg 1

42, Prove that if A is vpper triangular and By is the matrix that
results when the ith row and jth column of A are deleted, then
By; is upper triangular il { < j,

True-False Exercises

TF. In parts (a)}-(j) determine whether the statement is true or
false, and justify your answer.

(a) The determinant of the 2 x 2 matnx [f_ d

b] is ad -+ bc.

(b) Two square matrices that have the same determinant must have
the same size,

(c) The minor M, is the same as the cofactor Cj; if i + j iseven,
(d) IT Aisa 3 x 3symmetricmatrix, then Cy = Cj; foralli and j.

(e} The number obtained by a cofactor expansion of a matrix A is
independent of the row or column chosen for the expansion.

(f) If A is a square matrix whose minors are all zero, then
det(A) = 0.

(g) The determinant of a lower triangular matrix is the sum of the
entries along the main diagonal.

(h) For every square matrix A and every scalar c, it is true that
det(cA) = cdet{A).

(i) For all square matrices A and B, it is true that
det(A + B) = det(A) + det(B)
(j) Forevery 2 x 2 matrix A it is true that det(A?) = (det{A))".

Working withTechnology

T1. {a) Use the determinant capability of your technology utility
to find the determinant of the matrix

42 13 L1 60
00 00 —32 34
A=145 13 00 148
47 10 34 23

(b) Compare the result obtained in part (a) to that obtained by a
cofactor expansion along the second row of A.

T2. Let A" be the n x # matrix with 2's along the main diagonal,
1's along the diagonal lines immediately above and below the main
diagonal, and zeros everywhere else, Make a conjecture about the
relationship between n and det(A,,).
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e Exercise Set 2.2

In Exercises 1=4, verify that det(A) = det(A”).

[—2 3 (-6 1
La=|] 4] A=, _2]

27— 3 [ 4 2 =1
A=|1 2 4 4.4a= 0 2 -3

5 -3 6 -1 1 5

In Exercises 5-8, find the determinant of the given elementary
matrix by inspection.

1 o o0 0 -
0o 1 0 0 boo
5. 6 1 0
0 0 =5 0 _201
o 0o o0 1 L
"1 0 0 0 1 0 0 0
0 0 . 0
7.0 : s.°=0
01 00 o 0 1 0
0 0 01 0 0 o0 1

» In Exercises 9-14, evaluate the determinant of the matrix
by first reducing the matrix to row echelon form and then using
somne combination of row operations and cofactor expansion. -

3 -6 9 3 6 -9
9. |2 71 =2 1. 0 o0 -2
0 I 5 -2 1 5
S i i
?o?: Loxs 0
11. 12.]-2 4 1
0 2 10 B
0 1 2 3 L -
(1 3 1 5 3
-2 =7 0 -4 2
130 o 1 o 1
0o 0 2 1 |
0 0 0o 1 |
1 -2 3
-9 6 3
'4'—1 2 =6 =2
[ 2 8 6

In Exercises 15-22, evaluate the determinant, given that

a b ¢
d e f = -0
g h i

d e f g h i
15. g h i 6. {d e f
a b ¢ a b ¢
da 3 I a+d b+e c+f
17. |-d —e —f 18. | —d —e -f
4g 4h  4i I3 h i
a+g b+h c+i a b c
9. | 4 e f 20. | 2d 2e 2f
2 h i g+l h4+3b i+3c
—3a = =3¢ a b ¢
2. | d e f 22.|d e f
g—4d h-—4de i-4f 2¢ 26 2

23. Use row reduction to show that
1 1 1
a b c|=h—ac—aXc-b)
az b! cz
24, Verify the formulas in parts (a} and (b) and then make a con-
jecture about a general result of which these results are special

cases.
0 0 a
(a) det | O an dau | = —apdpdy
[ an dn an
-0 0 0 a4
0 0 an ay
(b} det = dnandy:da
O ap an au
L4 Qg2 diy dy

= In Exercises 25-28, confirm the identities without evaluating
the determinants directly. =

@ b oa+bh+o a b o
25. las by @+ b4 = las by 2
a, by ay+bhito wy oG
a bt ay+ by a+ by @ dr W
26, layt + by ait+ by ayt +b|=(- Iz) B b b
C &) €y [ T = T .1
a+b w—h o ay b o«
27, |u +b: Iy = b] = =2 (5] bg [
uy -+ b; iy — b] f..';_ [2£] b3 Cy
|(11 b +ra o+ rby + sa; ay dy y

28. laz badtas crdrby+sax| = h b b
ay by+tay oy +rby+say € €1 O
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Exercise Set 4.1

1.

Let V be the set of all ordered pairs of real numbers, and
consider the following addition and scalar multiplication op-
erations on u = (i), 42) and v = (v;, va):

w4 v = (i) + v, i+ v3), ka= (0, kus}

(a) Compute u+v and ku for u=(-1,2)},v=(3,4), and
k=3

(b) In words, explain why V is closed under addition and
scalar multiplication.

(c) Since addition on V is the standard addition operation on
R*, certain vector space axioms hold for V because they
are known to hold for R?, Which axioms are they?

{d) Show that Axioms 7, 8, and 9 hold.

{g) Show that Axiom 10 fails and hence that V is not a vector
space under the given operations.

. Let V be the set of all ordered pairs of real numbers, and

consider the following addition and scalar multiplication op-
erations on u = (i, #z) and v = (v, va):

utve= (0 +uv+ L u v +1), ko= (kuy,kuz)

(a) Compute u +v and ku for u = (0,4),v= (1, =3), and
k=2,

(b) Show that (0, 0) # 0.

{(c)} Show that (<=1, =1) =0.

(d) Show that Axiom 5 holds by producing an ordered pair
—u such that v+ (—=u) = 0 foru = (i, uz).

(e) Find two vector space axioms that fail to hold.

In Exercises 3-12, determine whether each set equipped with

the given operations is a vector space. For those that are not vector
spaces identify the vector space axioms that fail.

3.

The set of all real numbers with the standard operations of
addition and multiplication.

. The set o all pairs of real numbers of the form (x, 0) with the

standard operations on R,

, ‘The set of all pairs of real numbers of the form (x, ¥}, where

x = 0, with the standard operations on R*.

. The set of all n-tuples of real numbers that have the form

(x.x,...,Xx) with the standard operations on R".

. The set of all triples of real numbers with the standard vector

addition but with scalar multiplication defined by

k(x, y, 2) = (k*x, k*y, k'2)

. The set of all 2 x 2 invertible matrices with the standard ma-

trix addition and scalar multiplication.

10.

11.

12,

13.

14.

15.

16.

17.

18.

, The set of all 2 x 2 matrices of the form

a 0

0 b
with the standard matrix addition and scalar multiplication.
The set of all real-valued functions f defined everywhere on

the real line and such that f(1) = 0 with the operations used
in Example 6.

The set of all pairs of real numbers of the form (1, x) with the
operations

(LM +(LyY)=0,y+¥) and k(1,y}=(1,ky)

The set of polynomials of the form g + a,x with the opera-
tions

(ap + a;x) + (b + bix) = (ag + b} + (@) + bi}x

and
k(ao + ax) = (kay) + (kar)x

Verily Axioms 3, 7, 8, and 9 for the vector space given in Ex-
ample 4.

Verify Axioms 1,2, 3,7, 8,9, and 10 for the vector space given
in Example 6.

With the addition and scalar multiplication operations defined
in Example 7, show that V = R? satisfies Axioms 1-9.

Verify Axioms 1,2, 3, 6, 8,9, and 10 for the vector space given
in Example 8.

Show that the set of all points in R? lying on a line is & vector
space with respect to the standard operations of vector ad-
dition and scalar multiplication if and only if the line passes
through the origin.

Show that the set of alf points in R lying in a plane is a vector
space with respect to the standard operations of vector addi-
tion and scalar multiplication if and only if the plane passes
through the origin.

In Exercises 19-20, le1 V be the vector space of positive real

numbers with the vector space opetations given in Example 8. Let
u = 1 be any vector in V, and rewrite the vector statement as a
staternent about real numbers.

19.
20.

—n= (=1

ku=0ifand onlyifk =0oru=20.

Working with Proofs

21.

The argument that follows proves that if v, v, and w are vectors
in a vector space V such that u+ w = v+ w, thenu = v (the
cancellation faw for vector addition). As illustrated, justify the
steps by filling in the blanks.
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UFw=v-+w Hypothesis

(u+w)+ (—w) = (v+ w) + (—w) Add —w 1o both sides.
u+[w+ (—wl=v+[w+ (—w)]
ut+d=v+90

u=yv

22. Below is a seven-step proof of part (b) of Theorem 4.1.1.
Justify each step either by stating that it is true by hypothesis

or by specifying which of the ten vector space axioms applies.

Hypothesis: Let u be any vector in a vector space V, let 0 be
the zero vector in V, and let k be a scalar.

Conclusion: Then k0 = 0.

Proaf: (1} k0 + ko = k(0 + u)
(2) = ku
(3) Since kuisin V, —kuisin V.
{4) Therefore, (k0 - ku) + (—ku) = ku + (—ku).

(5) K0 + (ku + (—ku)) = ku + (—ku)
(6) kO+0=0
0] k=0

In Exercises 23-24, let u be any vector in a vector space V.
Give a step-by-step proof of the stated result using Exercises 21
and 22 as models for your presentation.

2 0u=10 24, —u=(—1)u

In Exercises 25-27, prove that the given set with the stated
operations is a vector space.

4.2 Subspaces
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25. The set V = [0} with the operations of addition and scalar
multiplication given in Example 1.

26. The set R™ of all infinite sequences of real numbers with the
operations of addition and scalar multiplication given in Ex-
ample 3.

27. The set M,,, of all m x n matrices with the usual operations
of addition and scalar multiplication.

28. Prove: If uis a veclor in a vector space V and k a scalar such
that ku = 0, then either k = 0 or u = 0. [Suggestion: Show
that if ku = 0 and & #£ 0, then u = 0. The result then follows
as a logical consequence of this.]

True-False Exercises

TF. In parts {a)-(f) determine whether the statement is true or
false, and justify your answer.

(a) A vector is any element of a vector space.
(b) A vector space must contain at least two vectors.

(c) Ifuis a vector and & is a scalar such that ku = 0, then it must
be true that k = 0.

(d) The set of positive real numbers is a vector space il vector
addition and scalar multiplication are the usual operations of
addition and multiplication of real numbers.

(e) In every vector space the vectors (—1}u and —u are the same.

(i) Inthe vectorspace F(—so, =) any function whose graph passes
through the origin is a zero vector.

1t is often the case that some vector space of interest is contained within a lurger veclor space
whose properties are known. In this section we will show how o recognize when this s the
case, we will explain how tlie properties of the larger vector spice can be used to obtain
properties of the smaller vector space, and we will give a vanety of important examples.

We begin with some terminology.

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is itsell
a vector space under the addition and scalar multiplication defined on V.

In general, to show that a nonempty set W with two operations is a vector space one
must verify the ten vector space axioms. However, if W is a subspace of a known vector
space V, then certain axioms need not be verified because they are “inherited” from V.
For example, it is not necessary to verify thatu + v = v + u holds in W because it holds
for all vectors in V including those in W. On the other hand, it is necessary to verify
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The LinearTransformation Theorem 4.2.4 can be viewed as a statement about matrix transformations by letting
Viewpoint T,: R" — R™ be multiplication by the coefficient matrix A. From this point of view
the solution space of Ax =0 is the set of vectors in R" that T, maps into the zero
vector in R™. This set is sometimes called the kernef of the transformation, so with this
terminology Theorem 4.2.4 can be rephrased as follows.

THEOREM 4.2.5 If A isanm x n matrix, then the kernel of the matrix transformation
Ta: R" — R™ is a subspace of R".

A Concluding Observation Itisimportant to recognize that spanning sets are not unique. For example, any nonzero 1
vector on the line in Figure 4.2.6a will span that line, and any two noncollinear vectors
in the plane in Figure 4.2.65 will span that plane. The following theorem, whose proofl
is left as an exercise, states conditions under which two sets of vectors will span the same i

space.

THEOREM 4.2.6 IfS = {vi,v2,..., V. } and §' = [wy, wa, ..., w;] are nonempty sets ,'|
of vectors in a vector space V, then |

spanivy, ¥2, ..., V) = span{wy, wa, . .., W}

if and only if each vector in S is a linear combination of those in §', and each vector in
§' is a linear combination of those in S.

Exercise Set 4.2

L. Use Theorem 4.2.1 to determine which of the following are
subspaces of R>.

(a) All vectors of the form (a, 0, 0).

{b) All vectors of the form (a, 1, 1).

{c) All vectors of the form (a, b, c), whereb=a +c.

(d) All vectors of the form (a, b, c), whereb=a+c+ 1.
{e) All vectors of the form (a, b, 0).

2. Use Theorem 4.2.1 to determine which of the following are
subspaces of M,,.

(a) The set of all diagonal n x n matrices.

(b) The set of all n x n matrices A such that det(A) = 0.
{c} Thesetof all n x n matrices A such that tr{4) = 0.
{d) The set of afl symmetric n x n matrices,

(e) The set of all » x n matrices A such that AT = — A,

() The setofalln x n matrices A for which Ax = 0 has only
the trivial solution.

(g) The set of all » x n matrices A such that AB = BA for
some fixed n x n matrix 8.

3. Use Theorem 4.2.1 to determine which of the following are

. Which of the following are subspaces of F{—c, «)?

. Which of the following are subspaces of R=?

subspaces of P;. ,.

(a) All polynomials @g + a@x + azx* + a;x* for which
dy = 0.

{(b) All polynomials ay + a,x + a:x* + asx* for which
agta +a:+a =0

{c) All polynomials of the form ag + ayx + axx? + ayx? in
which a;, a,, ai, and a; are rational numbers.

(d) All polynomials of the form ay + a,x, where ap and a; are
real numbers.

(a) All functions f in F(—co, o) for which f(0) = 0.

(b) All functions f in F(—cx, ) for which f{0) = 1.

(c) All functions f in F(—z, ) for which f(—x) = f(x).
{(d) All polynomials of degree 2.

(a) All sequences vin R™ of the form
v=(v,0,0,0,1v0...).
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11.

12.

13

14.

15,

() All sequences vin R™ of the form
y={(y,Lv,L,p, L...)

(c) All sequencesvin R™ of the form
v = (v, 2v,4u, 8v, 16v,...).

(d) All sequences in R™ whose components are ) from some
point on.

. A line L through the origin in R’ can be represented by para-

metric equations of the formx = ar, y = b, and z = cr. Use
these equations to show that L is a subspace of R? by showing
that if v, = (x), yi, z;) and v: = (xa, y2, 22) are points on L
and k is any real number, then kv, and v, - v; are also points
onkL.

. Which of the following are linear combinations of

u=(0,=2,Dandv=1(1,3~-1)?

() 2,2,2) (b) (0,4,5) (c) (0,0,0)

. Express the following as linear combinations of u = (2, 1, 4),

ve (1, =1,3),and w = (3,2, 5).

(@) (=9,-7,=15) (b) (6,11,6) {c) (0,0,0)

. Which of the following are linear combinations of

4 0 1 = 0 2
i B L R A
6 -8 0 0 -1 5
& [—l —s] L [0 o] “’[ 7 1]

. In each part express the vector as a linear combination of

p=24x+4x%p,=1-x+3x%and

P; =3 4 2x + 5x°,

(a) =9 —Tx — 15x* (b) 6+ 1x + 6x*
© 0 (d) 7+ Bx +9x*

In each part, determine whether the vectors span R°.
(a) V) = (2' 2' 2), ¥y = (0- Ov 3)1 V3= (00 lo l)

(b) \= (zv _1!3), 2= (4! 11 2): vi= (81 _'l| 8)
Suppose thatvy = (2,1, 0,3), vy = (3, =1, 5, 2),and

vy =(=10,2,1). Which of the following vectors are in
spanfvy, va, v3}?

(a) (2v 3v "'7t 3)
c) (L1, 1)

Determine whether the following polynomials span Ps.

(b) 0,0,0,0)
(d) (4,6, -13,4)

p=1-x+2x% py=3+rx,
p;=5—x+4x} pp=-2=2+23

Let T = cos’ x and g = sin”x. Which of the following lic in
the space spanned by fand g?

(aycos2x (b)3+x* (e}l (d)ysinx (e} 0

Determine whether the solution space of the system Ax =0
is a line through the origin, a plane through the origin, or the

16.

17.

19,

20.

21.

22
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origin only. If it is a plane, find an equation for it. If itis a
tine, find parametric equations for it.

1 1 i [} 2 3
@WA=| 3 -1 o0 bMAa=]2 5 3

| 2 -4 =5 0 8

1 -3 1 [1 -1 |
€ A=|2 -6 2 dAa=]2 -1 4

3 -9 3 3 1 u

(Calculus required) Show that the following sets of functions
are subspaces of F({—, ).

{(a) All continuous functions on (—oo, =),

(b} All differentiable functions on {=co, ).

{c) All differentiable functions on (—, =) that satisfy
f'+2f=0.

(Calculus required) Show that the set of continuous functions
f= f(x) on [a, b] such that

b
[ Jx)dx =0
is a subspace of Cia, b].

Show that the solution vectors of a consistent nonhomoge-
neous system of m linear equations in n unknowns do not
form a subspace of R*.

In each part, let Ty: R* — R* be multiplication by A, and
let w, = (1,2) and w3 = (=1, 1). Determine whether the set
{Ta(w)), Ta(nz)} spans R,

A—I_l bA—l-l
@A=1, , b)Aa=1 ,

In each part, let Ty: R® — R* be multiplication by A, and let
m=0010andu; =2, -1, 1)and uy = (1,1, -2). De-
termine whether the set {T(u;), Ta(uz), Ta(u;)} spans R2,

I 1 0 0o 1 o0
mA:[o I —l] (b)A=[1 1—3]

If T, is multiplication by a matrix A with three columns, then
the kernel of T, is one of four possible geometric objects. What
are they? Explain how you reached your conclusion.

Let v, =(1,6,4), v»=(2,4,-1), v =(=1,2,5), and
w; = (1, =2, —5), ws = (0, 8, 9). Use Theorem 4.2.6 to show
that span{v|, v, v;} = span{w;, w;}.

23. Theaccompanying figure shows a mass-spring system in which

a block of mass m is set into vibratory motion by pulling the
block beyond its natural position at x = 0 and releasing it at
time ¢ = 0. If friction and air resistance are ignored, then the
c-coordinate x (¢) of the block at time ¢ is given by a function
of the form

x(t) = ¢ coswt + ¢ sinwt
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where o is a fixed constant that depends on the mass of the
block and the stiffness of the spring and c; and ¢, are arbi-
trary. Show that this set of functions forms a subspace of
C% (=00, ),

Natural position ~

hwwwwwwwww
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¥ »~
0
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L
X
, :
0

A Figure Ex-23

Working with Proofs
24. Prove Theorem 4.2.6.

True-False Exercises

TF. In parts (a)-{k} determine whether the statement is true or
false, and justify your answer.

{a) Every subspace of a vector space is itsell a vectos space.
{(b) Every vector space is a subspace of itself.

(c) Every subset of a vector space V that contains the zero vector
in V is a subspace of V.

(d) The kernel of a matrix transformation T,: R" =» R™ is a sub-
space of R™.

{(e) The solution set of a consistent linear system Ax = b of m
equations in n unknowns is a subspace of R".

(f) The span of any finite set of vectots in a vector space is closed
under addition and scalar multiplication.

{(g) The intersection of any two subspaces of a vector space V isa
subspace of V.

{h) The union of any two subspaces of a vector space V is a sub-
space of V.

(i) Two subsets of a vector space V that span the same subspace
of V must be equal.

(j) The set of upper triangular n x n matrices is a subspace of the
vector space of all n x n matrices.

(k) The polynomials x — 1, (x = 1)?, and (x — 1)" span Py

Working with Technology

T1. Recall from Theorem 1.3.1 that a product Ax can be expressed
as & linear combination of the column vectors of the matrix A in
which the coefficients are the entries of x. Use matrix multiplica-
tion to compute

v==6(8,-2,1,-4) +17(-3,9,11,6) — 913, —1,2,4)

T2. Use the idea in Exercise T1 and matrix multiplication to de-
termine whether the polynomial

p=1l+x+x2+5
is in the span of
p=8-2r+x*=4x, py==349x+ Llx*+ 627,
py=13—x+ 2%+ 45}
T3. For the vectors that follow, determine whether

span{vl. ¥, VJ} L span[w., w2, wJ}

w=(-1,2013),
v1=(-331249

w=(-6,51737), w=(666-24),
wi=(2,77-15)

V2= (7v 4| 6- _3| l)l

4.3 Linear Independence

In this section we will consider the question ol whether the vectors in a given set are
interrelated in the sense thiat one or more of ther can be expressed s o linear combination
of the others. This is important to know in applications because the existence of such
relationships often signals that some kind of complication is likely 10 occur.

Linear Independence and
Dependence

In a rectangular xy-coordinate system every vector in the plane can be expressed in
exactly one way as a linear combination of the standard unit vectors, For example, the

only way to express the vector (3, 2) as a linear combination ofi = (1,0} and j = (0, 1)

15

(3,2) =31,00 4+ 2(0, 1) = 3i+ 2§ n

e
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&




