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where L is a lower triangular matrix with l’s on the main diagonal, D is a diagonal
matrix, and U is an upper triangular matrix with l’s on the main diagonal. This is called
the LDU-decomposition (or LDU-factorization) of A.

PLU-Decompositions Many computer algorithms for solving linear systems perform row interchanges to re
duce roundoff error, in which case the existence of an LU-decomposition is not guar
anteed. However, it is possible to work around this problem by “preprocessing” the
coefficient matrix A so that the row interchanges are performed prim to computing the
LU-decomposition itself. More specifically, the idea is to create a matrix Q (called a
permutation matrix) by multiplying, in sequence, those elementary matrices that produce
the row interchanges and then execute them by computing the product QA. This product
can then be reduced to row echelon form t’ithout row interchanges, so it is assured to
have an LU-decomposition

QA=LU (14)

Because the matrix Q is invertible (being a product of elementary matrices), the systems
Ax = b and QAx = Qb will have the same solutions. But it follows from (14) that
the latter system can be rewritten as LUx = Qb and hence can he solved using LU-
decomposition.

It is common to see Equation (14) expressed as

A=PLU (15)

in which P = Qt This is called a PLU-decomposition or (PLU-factarization) of A.

Exercise Set 9.1
I. Use the method of Example I and the LU-decomposition L _10] Hi = r_b0

-q 3 0111 -21 L 6 5JLX2J L ‘9

l_’ 511—, lb iiL — J L — JL 2 —2 —2 x1 —4
to solve the syslem 5. 0 —2 2 x, = —2

it1 —fix’=O —l 5 2 X3 6

—it ± Sx =

—3 12 —6 x1 —33
2. Use the method of Example I and the LU-decomposition 6. I —2 2 .r2 = 7

3 —6 ° 0[l —2 —q 0 I I —l
2 0 6 =1 2 4 0110 1 2?

—4 7 4 [—4 — i 2j [o 0
In Exercises 7—8, an LU-decomposition ofa matrix A is given.

—I —l(a) Compute L and U -

to solve the system . -

(b) Use the result In part (a) to find the Inverse of A. 4
3x — — it3 = —3

it1 +6x3=—22 2 —l 3

—4x1+?x,+4x3= 3 7. A 4 2 I

—6 —l 2
‘- In Exercises 3—6, find an LU-decomposition of the coefficient I 0 0 2 — I 3

matrix, and then use the method of Example Ito solve the sys- A = LU = 2 I 0 0 4 —5
tern. -4

3 —l 0 6
r 2 81 rt1 1—21
[—i —I] [x2j — [—2J 8. The LU-decornposition obtained in Example 2.
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2 I —1
A= —2 —I 2

2 I 0

(a) Find an LU-decomposition of A

10. (a) Show that the matrix

has no LU-decomposition.

(b) Find a FLU-decomposition of this matrix.

r —12

14.A=l0 2

—28

[o 3—21 [7

16.A=Il I 41;b=I 5

L2 2 5J L—2

A=E” b

Lc d

(a) Prove: If a #0, then the matrix A has a unique LU-
decomposition with l’s along the main diagonal of L.

(b) Find the LU-decomposition described in part (a).

19. Prove: If A is any x pi matrix, then A can be factored as
A = FLU, where L is lower triangular. U is upper triangular,
and P can be obtained by interchanging the rows of I, appro
priately. [knit: Let U be a row echelon form of A, and let
all row interchanges required in the reduction of A to U be
performed first.]

True-False Exercises
TI’. In parts (a)—(e) determine whether the statement is true or
false, and justify your answer.

(a) Every square matrix has an LU-decomposition.

(b) If a square matrix A is row equivalent to an upper triangular
matrix U, then A has an LU-decomposition.

(c) If L,, L2 ,.., L4 are ii x n lower triangular matrices, then the
product L, L1 . - L is lower triangular.

(d) If an invertible matrix A has an LU-decomposition, then A
has a unique LDU-decomposition.

(e) Every square matrix has a FLU-decomposition.

Working withTechnology

TI. Technology utilities vary in how they handle LU-decompo
sitions. For example, many utilities perform row interchanges to

61 reduce roundoff error and hence produce FLU-decompositions.
even when asked for LU-decompositionS See what happens when

13
you use your utility to find an LU-decomposition of the matrix A

J in Example 2.

T2. The accompanying figure shows a metal plate whose edges are
held at the temperatures shown. It follows from thermodynamic
principles that the temperature at each of the six interior nodes will
eventually stabilize at a value that is approximately the average of
the temperatures at the four neighboring nodes. These are called
the steady-state temperatures at the nodes. Thus, for example, if
we denote the steady-state temperatures at the interior nodes in

9. Let

17. Let Ax = b be a linear system of n equalions inn unknowns,
and assume that A is an invertible matrix that can be reduced
to row echelon form without row interchanges. How many
additions and multiplications are required to solve the system
by the method of Example I?

(b) Express A in the form A = LDU1, where L1 is lower
triangular with l’s along the main diagonal, U1 is upper
triangular, and D is a diagonal matrix.

(c) Express A in the form A = L2U2, where L, is lower tri
angular with i’s along the main diagonal and U2 is upper
triangular.

1° I

[.1 0

Working with Proofs

IS. Let

1” In Exercises 11—12, use the given FLU-decomposition ofA to
solve the linear system Ax = b by rewriting it as PAx = Fb
and solving this system by LU-decomposition.

121 10 1 4
11. b=IlI;A=Il 2 2

[5j 13

1 ojp 0

A=I1 0 oo I oo
[o o 1iL3 —5 ?7j[O

[1 4 I 2
12. b=I0l:A=a 0 2 I

L6i 8 I B

2 21
41=I’LU

0

El 0 olF4 I 2lrl ! 11
4 21

A=I0 0 1110 —l 4110 1 —41=PLU
I oJ[o 0 9j[o o IJ

‘ In Exercises 73—14, find the LDU-decomposition of A. -

r’
13. A =

[4

$- In Exercises 15—16, find a FLU-decomposition of A, and use
it to solve the linear system Ax = b by the method of Exercises II
and 12.

r
IS. A =

Lo

—l

—I
[—2

lJ
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which is called colug,n-eetor form. The choice of notation is often a mutter of taste or

convenience, but sometimes the nature of a problem will suggest a preferred notation.

Notations (15), (16), and (17) will all be used at various places in this text.

Application of Linear Combinations to Color Models

Colors on computer monitors are commonly based on what is caned

the 11GB color model. Colors in this system are created by adding

together percentages of the primary colors red (R), green (G), and

blue (B). One way to do this is to identify the primary colors with

the vectors
r=(l,0,0) (purered),

g (0,1,0) (pure green),
b = (0, 0, I) (pure blue)

in R3 and to create all other colors by forming linear combinations

of r, g, and b using coefficients between 0 and 1, inclusive; these

coefficients represent the percentage of each pure color in the mix.

The set of all such color vectors is called 11GB space or the 11GB

color cube (Figure 3.1.14). Thus, each color vector e in this cube is

expressible as a linear combination of the form

c = k1r 1- k,g “- k3b
= kt(l, 0,0) + k2(0, 1,0) + k3(0, 0, I)

= (kt,k2,k3)

where 0 < < 1. As indicated in the figure, the corners of the cube

represent the pure primary colors together with the colors black,

white, magenta, cyan, and yellow. The vectors along the diagonal

running from black to white correspond to shades of gray.

Blue Cyan

cé-fu,IJ)

Black I I I Green
,aeC ,i!c P (0,0,0) (0, 1,0)

Red Yellow

0 Figure 3 1.14 (1,0,0) (1, 1,0)

In Exercises 3—4, find the components of the vector PP2 C

3. (a) 5), P-(2. B) (b) P1(5, —2. 1), P2(2 4.2)

4. (a) PK—6,2), P1(—4,—l) (b) Pi(0,O,0), P,(—l,6, I)

5. (a) Find the terminal point of the vector that is equivalent to

u = (I, 2) and whose initial point is A (I, I)

(b) Find the initial point of the vector that is equiialent to

u = (I, 1,3) and whose terminal point is B(—1, —1,2)

6. (a) Find the initial point of the sector that is equnalent to

u = (1,2) and whose terminal point is 8(2,0)

(b) Find the terminal point of the vector that is equivalent to

u = (1, 1,3) and whose initial point is AID, 2,0)

7. Find an initial point P of a nonzero vector u = PQ with ter

minal point Q(3, 0, —5) and such that

(a) u has the same direction as’ = (4. —2,—I)

(0, 0,

Exercise Set 3.1
- In Exercises 1—2, find the components of the vector. -

I. (a) (b)

— I I

2. (a) Y (b) (0.4,4)

(23)(3,3)

(b) u is oppositely directed toy = (4, —2, —1).



3.1 Vectors in 2-Space, 3-Space, and n-Space 141

8. Find a terminal point Q of a nonzero vector u = PQ with
initial point P(— 1,3, —5) and such that

(a) u has the same direction as v = (6, 7, —3).

(b) u is oppositely directed to v = (6, 7, —3).

9. Let u = (4, —I), v = (0, 5), and iv = —3). Find the
components of

10. Let ii = (—3,1,2). v = (4.0, —8), and iv = (6. —I, —4).
Find the components of

IL Letu = (—3.2.1.0). v = (4,7, —3.2). and
iv = (5, —2,8, 1). Find the components of

12. Let u = (1.2, —3,5,0), v = (0,4,—I, 1,2), and
w = (7, I, —4, —2,3). Find the components of

(d) f(w—5v+2u)+v

13. Let ci, v, and w be the vectors in Exercise II. Find the com
ponents of the vector x that satisfies the equation
3u + v — 2w = 3x + 2w.

14. Let u, v, and iv be the vectors in Exercise 12. Find the com
ponents of the vector x that satisfies the equation
2u — v + x = 7x + w.

15. Which of the following vectors in R5, if any, are parallel to
u=(—2, 1,0,3,5, I)?

(a) (4,2,0.6, 10.2)

(b) (4, —2,0, —6, —10, —2)

(c) (0,0,0,0,0,0)

16. For what value(s) of t, if any, is the given vector parallel to
u = (4, —I)?

17. Letu = (1. —1.3.5) andy = (2, 1,0. —3). Findscalarsa and
bsothatau+bv=(l,—4,9, 18).

18. Letu= (2,1,0,1,—I) andy = (—2,3.1,0,2). Findscalars
a and b so that au + by = (—8,8,3, — 1,7).

In Exercises 19—20, find scalars c1. c,, and c3 for which the
equation is satisfied. I
19. c1(I, —1,0) +c,(3,2, I) +c1(0, 1,4) = (—1.1,19)

20.ci(—l.0,2)+c(2,2—2)+c3(I,—2,l)(—6,12,4)

21. Show that there do not exist scalars c1, c, and c3 such that

23. Let P be the point (2,3, —2) and Q the point (7, —4, 1).

(a) Find the midpoint of the line segment connecting the
points P and Q.

(b) Find the point on the line segment connecting the points
P and Q that is of the way from P to Q.

24. In relation to the points P1 and P2 in Figure 3.1.12. what can
you say about the terminal point of the following veclor if its
initial point is at the origin?

— — —

ii = OP1 + (OP1 — OF1)

25. In each part, find the components of the vector ci ± v + w.

*tE:/

:z::

26. Referring to the vectors pictured in Exercise 25, find the com
ponents of the vector u — v + w.

-

27. Let P be the point (1,3,7). If the point (4,0, —6) is the mid
point of the line segment connecting P and Q, what is Q?

28, If the sum of three vectors in R3 is zero, must they lie in the
same plane? Explain.

29. Consider the regular hexagon shown in the accompanying fig
ure.

(a) What is the sum of the six radial vectors that run from the
center to the vertices?

(b) How is the sum affected if each radial vector is multiplied
by 4?

(c) What is the sum of the five radial vectors that remain ifa
is removed?

(d) Discuss some variations and generalizations of the result
in part (c).

4 Figure Ex-29

30. What is the sum of all radial vectors of a regular n-sided poly
gon? (See Exercise 29.)

22. Show that there do not exist scalars c1, c,, and c1 such that

(a) u+w

(c) 2(u — 5w)

(b) v — 3u

(d) 3v—2(u+2w)

(a) v — w

(c) —J(v — 8w)

(b) 6u + 2v

(d) (]u—7w)—(8v+u)

(a) v — iv

(c) 6(u — 3v)

(a)

(b) —u + (v — 4w)

(d) (6v — w) — (4u + v)

(b)

(a) v + w

(c) (3u—v)—(2u+4w)

(b) 3(2u — v)

to
(a) (8,, —2) (b) (8r, 2t) Ic) (1, t2)

f b

0 C

ci

ci (—2,9,6) + c,(—3, 2, I) + c3(1, 7,5) = (0,5,4)
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Working with Proofs

31. Prove parts (a), (a), and (c/) of Theorem 3,1.1.

32. Prove parts (e)—Q) of Theorem 3.!

33. Prove parts (a)—(c) of Theorem 3.1.2.

True-False Exercises

TI’. In parts (aNk) determine whether the statement is true or

false, and justify your answer.

(a) Two equivalent vectors must have the same initial point.

(b) The vectors (a, b) and (a, b. 0) are equivalent.

(c) If k is a scalar and visa vector, then v and ki’ are parallel if

and only if k 0.

(d) The vectors v + (ii + w) and (w + v) + u are the same.

(e) Ifu + v = ii +w, then v = w.

(f) Ifa and bare scalars such that au + by = 0, then a andy are

parallel vectors.

(g) Collinear vectors with the same length are equal.

(h) If (a, I,, c) + (x, y, z) = (x, y, z), then (a, b, c) must be the

zero vector.

(i) If k and in are scalars and ii andy are vectors, then

(k + mHu + v) = ku + my

(j) If the vectors v and ware given, then the vector equation

can be solved for x.

3(2v — x) = 5x — 4w + v

(k) The linear combinations a1v1 + a2v2 and b1v1 + b2v2 can only

be equal ifa1 = h1 and a2 = b2.

3.2 Norm, Dot Product and Distance in W
In this section we will be concerned with the notions of length and distance as they relate to

vectors. We will first discuss these ideas in R2 and R and then extend them algebraically

to k’

In this text we will denote the length of a vector v by the symbol iiW, which is read as

the norm of v, the length of v, or the magnitude of v (the term “norm” being a common

mathematical synonym for length). As suggested in Figure 3.2hz, it follows from the

Theorem of Pythagoras that the norm of a vector (vj, v2) ink2 is

(I)

Similarly, for a vector (v1, m, v3) in R3, it follows from Figure 3.2.lh and two applica

tions of the Theorem of Pythagoras that

= (OR)2 ± (RP)2 = (OQ) + (QR)2 + (RP)2 = u + a ÷

-

Norm of a Vector

5,
(v1, u,)

x

Ci

(a)

U:, v3) and hence that

S

(b)

A Figure 3.2.1

Uvii=’v’vi2+v’±v

Motivated by the pattern of Formulas (I) and (2), we make the following definition.

(2)

DEFINITION 1 Jfv = (vi, v2,..., v) is a vector in R”, then the norm ofv (also called

the length of v or the magnitude of v) is denoted by IivW, and is defined by the formula

rvw=v’v+v+’ ±v (3)
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Thus, if the row vectors of A are r1, r,..., r, and the column vectors of B are cj,

c,, then the matrix product AB can be expressed as

Fri .q r1 •c, ... r1 •c01

r2’ci ri•c’ ‘•‘ r2•c0
AB=1 .

. I (28)

Lrm.ci Fm’C2 rm’cflj

3

Exercise Set 3.2
> In Exercises I—!, find the norm of v, and a unit vector that is the positive x-axis, and a vector bin that plane has a length of

oppositely directed to v. 4 5 units and points in the positive y-direction. Find a b.

• 1. (a) v = (2,2,2) (b) v = (1,0,2, 1,3)
• 14. Suppose that a vector a in the xy-plane points in a direction

2. (a) ,= (1, —1,2) (b) v = (—2,3,3—1) that is 4 counterclockwise from the positive x-axis, and a

vector b in that plane points in a direction that is 43’ clock-

•
In Exercises 3—4, evaluate the given expression with wise from the positive x-axis. That can you say about the

u= (2, —2.3), v= (I, —3.4), andw = (3.6,—4). 4 value ofab?

3. (a) lu + vfl (b) [lull + lvii )‘ In Exercises 15—16, determine whether the expression makes

sense mathematically. If not, explain why. 4

(c) ll—2u + 2vll (d) 113u — 5v + wil
15. (a) u-(v-w) (b) u.(v+w)

4. (a) Uu+v+wi (b) [lu—vU
(c) lu . vii (d) (u . v) — huh

(c) [i3vh — 3ilvil (d) Null — livil

In Exercises 54. evaluate the given expression with 16. (a) lull . (v) (b) (u . v) — w

u= (—2—1,4,5), v=(3, 1,—5,7), and w=(—6,2, II). 4
(c) (u.v)—k (d)k’u

S. (a) N3u — 5v + wU (b) i3u:l — 5;!vh + Iwil > in Exercises l7—18,verifythat thecauchy—Schwarzinequality

(c) II— UtlIrvil holds. ‘d

6. (a) lull + Ii— 2v + II— 3w11 (b) II lu — vllwj[ 17. (a) u = (—3, 1, 0), v = (2, — I, 3)

7. Letv = (—2,3.0,6). Find all scalarsk such that LlkvN = 5. (b) u = (0,2,2,1), v = (I, 1, I, 1)

8. Letv = (I, 1,2, —3,1). Find all scalarsk such that 18. (a) u= (4,1,1), v= (1,2,3)

llkvli = 4. (b) u = (1,2.1,2,3). v = (0,1,1,5, —2)

In Exeises 9—lu, findu . v, u • u. andy. v. I
19. Let r0 = Gte, yo) be a fixed vector in R2. In each part, describe

9. (a) u = (3, 1.4), v = (2,2, —4) in words the set of all vectorsr = (x, y) that satisfy the stated

(b) u = (I, 1.4,6), v = (2, —2,3, —2) condition.

(a) Ur—roN = I (b) [jr— roll I (c) hr—roll> I
IC. (a) u = (1,1, —2,3), v = (—1,0,5,1)

(b) u= (2, —1,1,0, —2), v (1,2,2,2,1) 20. Repeatthedirectionsof Exercise 19 forvectors r= (x,y,z)

and r0 = (.t0, Ye. Zo) in R3.
1” In Exercises 11—12, find the Euclidean distance between u and v

and the cosine of the angle between those vectors. State whether r Exercises2l—25 Thedirectionofanonzerovectorvinanxyz

that angle is acute, obtuse, or 900. 1 coordinate system is completely determined by the angles a,

II. (a) u = (3,3,3), v = (1,0,4) and y between v and the standard unit vectors i, . and k (Fig

ure Ex-2l). Thcse are called the direction angles of v, and their

(b) u = (0, —2. —1, 1). v = (—3,2,4,4) cosines are called the direction cosines ofv. I

12. (a) ii = (1,2, —3,0). v = (5, 1.2, —2) 21. UseFormula(I3)toshowthat thedirectioncosinesofa vector

(b) u= (0,1,1,1,2), v = (2, 1,0, —1,3) v = (vi, v2,vj) in R3 are

13. Suppose that a vector a in the xy-plane has a length of 9 units Ci 2 1)3
cosa=—, cosfl=—, cosy=—

and points in a direction that is 120° counterclockwise from IlvIl lvii IlvIl
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22. Use the result in Exercise 21 to show that

23. Show thai two nonzero vectors v1 and v2 in R3 are orthogonal
if and only if their direction cosines satisfy

cos a, cos a2 ± cos fl cos $2 + cos v cos y2 = 0

24. The accompanying figure shows a cube.

(a) Find the angle between the vectors d and u to the nearest
degree.

(b) Make a conjecture about the angle between the vectors
d and v, and confirm your conjecture by computing the
angle.

25. Estimate, to the nearest degree, the angles that a diagonal of a
box with dimensions 10cm x l5cm x 25cm makes with the
edges of the box.

26. If [lvh = 2 and Iw[l = 3, what are the largest and smallest val
ues possible for liv — WI!? Give a geometric explanation of
your results.

27. What can you say about two nonzçro vectors, ii and v. that
satisfy the equation Vu + vi] = IJull + lvi]?

28. (a) What relationship must hold for the point p = (a, b, c)
to be equidistant from the origin and the xc-plane? Make
sure that the relationship you stale is valid lorpositive and
negative values of a, b, and c.

(b) What relationship must hold for the point p = (a, b, c) to
be farther from the origin than from the ic-plane? Make

sure that the relationship you sUite is valid for positive and

negative values of a, b, and r.

29. State a procedure for finding a vector of a specified length in

that points in the same direction as a given vector v.

30. Under what conditions will the triangle inequality (Theo
rem 3.2.5a) be an equality? Explain your answer geometri
cally.

Exercises 31—32 The effect that a force has on an object de

pends on the magnitude of the force and the direction in which it is
applied. Thus, forces can be regarded as vectors and represented
as arrows in which the length of the arrow specifies the magnitude

of the force, and the direction of the arrow specifies the direction in

which the force is applied. It is a fact of physics that force vectors

obey the parallelogram law in the sense that if two force vectors

F, and F2 are applied at a point on an object, then the effect is
the same as if the single force F, + F’2 (called the resultant) were

applied at that poinl (see accompanying figure). Forces are com

monly measured in units called pounds-force (abbreviated lbt) or

Newtons (abbreviated N). 4

31. A particle is said to be in static equilibrium if the resultant of

all forces applied to it is zero. For the forces in the accompa

nying figure, find the resultant F that must be applied to the

indicated point to produce static equilibrium. Describe F by

giving its magnitude and the angle in degrees that it makes

with the positive i-axis.

I’

lj

X] I Figure Ex-21

cos2 a + cos $ + cos- y =

F, + F,

F,

The single force
F, + F, has the
same effect as the
two forces F, and F,.

F’

U
I Figure Ex-24

32. Follow the directions of Exercise 31.

A Figure Ex-31

l2O/ lSO

N:

A Figure Ex-32

Working with Proofs

33. Prove parts (a) and (h) of Theorem 3.2,1 -

34. Prove parts (a) and (r) of Theorem 3.2.3.

35. Prove parts (d) and (e) of Theorem 3.2.3.

True-False Exercises

TE’. In parts (a)—Q) determine whether the statement is true or

false, and justify your answer.
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(a) If each component of a vector in P3 is doubled, the norm of (h) Ifu -V = 0, then either u 0 or v = 0.

• that vector is doubled. (i) In R-. if u lies in the first quadrant and v lies in the third

• (b) In P2. the vectors of norm 5 whose initial points are at the On- quadrant, then ii . v cannot be positive.

gin have terminal points lying on a circle of radius 5 centered

at the origin.
(j) For all vectors u, v, and win R, we have

(c) Every vector in Th has a positive norm. lu +V ± wIl 5 lul + hvi + liwi

(d) If v is a nonzero vector in R”,there are exactly two unit vectors
Working withTechnology

that are parallel toy.
•

Ti. Let u be a vector in P10° whose ith component is i, and let’•

(e) If ilul= 2, lvi’ = I, and ny = I, then the angle between ii the vector in R1 whose ith component is 1/(1 + I). Find the

andy is r/3 radians, dot product ofu andy.

(f) The expressions (u . v) + wand u’ (v + w) are both meaning T2. Find, to the nearcst degree, the angles that a diagonal of a box

ful and equal to each other. with dimensions 10cm x 11cm x 25cm makes with the edges of

(g) Ifu•y=u’w,theny=w. thebox.

___

—

3.3 Orthogonality
In the last section we defined the notion of “angle” between vectors in P’. Tn this section

we will focus on the notion of ‘perpendicularity.” Perpendicular vectors in R” play an

important role in a wide variety of applications.

Orthogonal Vectors Recall from Formula (20) in the previous section that the angle 9 between two nonzero

vectors u and v in P° is defined by the formula

ifO=cos I
lu il Ilv U

It follows from this that 9 = jr/2 if and only if u • v = 0. Thus, we make the following

definition.

DEFINITION 1 Two nonzero vectors u and v in R” are said to be orthogonal (or

perpendicular) if u • v = 0. We will also agree that the zero vector in R” is orthogonal

to every vector in P°.

I EXAMPLE 1 Orthogonal Vectors

(a) Show that u = (—2,3, 1,4) and v = (1,2,0,—I) are orthogonal vectors in R4.

(b) Let S = (I,], k} be the set of standard unit vectors in P3. Show that each ordered

pair of vectors in S is orthogonal.

Solution (a) The vectors are orthogonal since

u’v=(—2)(l)+(3)(2)+(l)(0)+(4)(—l) =0

Solution (b) It suffices to show that

i-j=i-k=j•k=0
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________________/

The third distance problem posed above is to find the distance between two parallelPU
¶ planes in R3. As suggested in Figure 3.3.7. the distance between a plane V and a plane

I 11’ can be obtained by finding any point P0 in one of the planes, and computing the
distance between that point and the other plane. Here is an example.

/ EXAMPLE S Distance Beeen Parallel Planes

The planes
A Figure 3.3.7 The distance

x + 2y — 2z = 3 and 2x + 4y — 4z = 7between the parallel planes V
and W is equal to the distance are parallel since their normals, (1. 2, —2) and (2,4, —4), are parallel vectors, Find the
between P0 and W. distance between these planes.

Solution To find the distance D between the planes, we can select an arbitrary point in
one of the planes and compute its distance to the other plane. By settingy = z = 0 in
the equation x + 2y — 2z = 3, we obtain the point P0(3, 0,0) in this plane. From (16),
the distance between P0 and the plane 2x + 4y — 4z = 7 is

12(3)+4(O)+(—4)(0)—71 1
22+42+(_4)2 6

Exercise Set 3.3
P in Exercises 1—2, determine whether u and v are orthogonal lix

—
2y + 3z = 4, —2x + 5y + 4: = —i

vectors. 4 :
1. (a) ii = (6, 1,4), v = (2,0, —3)

In Exercises 13—13, find lIproi0ulP.

j13. (a) to = (I, —2), a = (—4, —3)(b) u = (0,0,—I), v = (I, 1,1)
(b)u=(3,0.4), a=(2,3,3)(c) a = (3, —2, 1,3). v = (—4,1, —3,7)

(d) u = (5, —4,0,3), v = (—4, I, —3.7) 14. (a) a = (5, 6), a = (2, —I)

2. (a) u=(2,3), v=(57) (b) u=(3,—2,6), a=(I,2,—7)

(b) ii = (I, I, 1), = (0,0,0) fr In Exercises 15—20, find the vector component of a along a and
the vector component of a orthogonal to a.(c) u=(l,—5,4), v=(3,3,3)

(d)u=(4,l,—2,5), v=(—I,5,3,I) 15,a(6,2), a=(3,—9) 16.u(—l,—2), p(—2,3)

In Exercises 3—6, find a point-normal form of the equation of 17. u = (3,1, —7), a = (1,0,5)
the plane passing through P and having nasa normal.

18. to = (2,0, I), a = (1,2,3)3. P(—l, 3, —2); n = (—2,1,—I)

4. P0,1.4); n= (1,9.6) 5. P(2,0,0); n= (0.0,2) 19. a = (2,1,1,2). a = (4, —4.2, —2)

6. P(0,0,0); n= (1,2,3) 20. u= (5,0, —3,7), a = (2,1,—I, —I)

In Exercises 7—ID, determine whether the given planes are In Exercises 21—24, find the distance between the point and the
parallel. line.

21. (—3, I); ‘lx + 3y + 4 = 07. 4x—y+2z=5 and 7x—3y+4z=8

22. (—1,4); x—3y±2=O8.x—4y—3:—2=0 and 3x—12y—9t—7=0

9. 2y=8x—4z+5 and x=:+v - (L—); y=—4x±2

lO.(—4,t,2)’(x,y,:)O and (8,—2,—4).(x,y,z)=O 24(1.8); 3x+v=5

In Exercises 11—12, determine whether the given planes are In Exercises 2526, find the distance between the point and the
perpendicular. plane.
11. 3x —y +z— = 0, x +2: = —l 25. (3,1, —2); x +2y —2z =4

i
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araljel 26. (—1,—I, 2): 2x + 5y — 6z = 36. As illustrated in the accompanying figure, a wagon is pulled

plane horizontally by exerting a force of 10 lb on the handle at an

rig the rfr In Exercises 27—2K. find the distance between the given parallel angle of 60° with the horizontal. Flow much work is done in
planes. moving the wagon 50 It?

27.lt—y—z=5 and —4x±2y±2z=l2

28. 2x—y+:=l and zr—y+z=—l lOlbL

29. Find a unit vector that is orthogonal to both ii = (I, 0, I) and

________ ________

501t I
v= (0,1,1).

d the
30. (al Show that v = (a, b) and w = (—b, a) are orthogonal 37. A sailboat travels IOU m due north while the wind exerts a

vectors, force of 500 N toward the northeast. Flow much work does

o (b) Use the result in part (a) to find two vectors that are or- the wind do?

thogonal toy = (2, —3).
(16), . . Working with Proofs

(c) Find two unit vectors that are orthogonal toy = (—3, 4).
38. Let a andy be nonzero vectors in 2-or 3-space, and let k = lull

31. Dothepointsd(l, 1, I), B(—2,0, 3),andC(—3, —1, I) form and I = IlvIl- Prove that the vector w = /u+ kv bisects the

the vertices of a right triangle? Explain, angle between a andy.

32. Repeal Exercise 31 for the points A(3, 0,2), 8(4,3,0) and 39. Prove part (a) olTheorem 3.3.4.

C(8, 1.—I).
True-False Exercises

33. Show that if v is orthogonal to both wi and w2, then v is or
TF. In parts (a) (g) determine whether the statement is true or

thogonal to kiwi ± k.w, for all scalars k and k.- - - false, and justify your answer.

33. Is it possible to have proj,u = proja? Explain. (a) The vectors (3, —1,2) and (0.0.0) are orthogonal.

Lereis&’sJ-37 In physics and engineering the ,roth B’ per- (b) If a and yare orthogonal veclors, then for all nonzero scalars

formed by a consrwuJàrce F applied in the du’ectwii of niotion to k and in, ku and my are orthogonal vectors.

an object moving a distanced on a straight line is defined to be
(c) The orthogonal projection of a on a is perpendicular to the

W = II Flld (force magnitude times distance) vector component of a orthogonal to a.

rid
In the case where the applied force is constant but makes an angle (d) If a and bare orthogonal vectors, then forevery nonzero vector
U with the direction of motion, and where the object moves along a, we have
a line from a point P to a point Q, we call PQ the displacement projroj(u)) = 0
and define the work performed by the force to be

—* , (c) If a and u are nonzero vectors, then
W = F- PQ = l1F)PQllcosO

proj (proj (a)) = proj (u)
(see accompanying figure). Common units of work are ft-lb (foot

pounds) or Nm (Newton meters). I -
(f) If the relationship

IIF F proj•u = proj,v

holds for some nonzero vector a, then a = y.

— (g) For all vectors a and v, it is true that

I IIPQII
1

llu+vU=l[uO+vll
Work = (IIFII cosU) IIQlI

Working withTechnology

TI. Find the lengths of the sides and the interior angles of the
35. Show that the work performed by a constant force (not nec- - - 1- triangle in 8 whose vertices are

essarily In the direction ol motion) can be expressed as
P(2,4,2,42), Q(6.4,4,4,6), 8(5,7,5.7.2)

11’ = ±PQiiIIprojFi
C T2. Express the vector ii = (2,3. 1,2) in the form a = w + w,

and explain when the + s&n should be used and when the — wherewi is a St alarmultiple ofa = (—1.0,2, I) and w2 is orthog

ign should be used. onal to a.
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Exercise Set 2.1
P’- in Exercises 1—2. find all the minors and cofactors of the ma- A —4 4 0
trixA, rA—l o i

17.A=l . I 18.,I= —I A (I
L ‘

I —2 3 I I 2 — ‘ 0 0 A—S

l.A= 6 7 —l 2,,4= 3 3 6

—3 I 4 0 I 4 19. Evaluate the determinant in Exercise 13 by a cofactor expan
sion along

3. Let (a) the first r&v. (b) the first column.
4 —1 I 6 (c) the second row. (d) the second column.
0 0—33

A = (e) the third row. (f) the third column.
4 I 0 14

4 I 3 2 20. Evaluate the determinant in Exercise 12 by a cofactor expan

Find
sion along

(a) M13 and C13. (b) M23 and C23. (a) the first row. (b) the first column.
ies (c) the second row. (d) the second column.
w. (c) Al,, and C,2. (d) W1 and C,1.

re
(e) the third row. (f) the third column.

4.Let
es

‘ 3 —l I
fr in Exercises 2t—26, evaluate det(A) by a cofactor expansion

—3 2 0 3
along a row or column of your choice. ‘4

3—2 i o —3 0 7 3 3 I

3 —2 I 4 21.A= 2 5 I 22.A= I 0 —4

Find —l 1 —3

(a) Al12 and C. (b) M4 and C44.

(c) M4andC31. (d)M’4andC’4. t k k2 k±l k—I 7

23.A= I k k2 24.A= 2 k—3 4

In Exercises 5—8, evaluate the determinant of the given matrix. I k k2 5 k + I k
If the matrix is invertible, use Equation (2) to find its inverse. I

7,

aA=[:

?‘ In Exercises 9—14, use the arrow technique to evaluate the de- 2 10 3 2
terminant. I

—2 7 6 4 0 0 1 0
9(13 5

10. 5 I —2 3 3 3 —l 0
—3 a—2

3 8 4 26.A=l 2 4 2 3

9 4 6 2 3

—2 I 4 —l I 2 2 2 4 2 3

II. 3 5 —7 12. 3 0 —5

1 6 2 I 7 2
W In Exercises 27—32, evaluate the determinant of the given ma
trix by inspection. 4

3 0 1) c I 0 0 200
13 ‘ —l 5 14 ‘

.2
27. 0 —I 0 28. 0 2 0

1 9—4 4 c—I 2 0 0 002

In Exercises IS—IN, find all values of A for which det(A) = 0.
0000 1111

?—4 0 0 I 2 0 0 0 2 2 2

I5.A=E’
I]

16.A= ‘0 A 2 29.0430 30.0033
[—5 A+4J

0 3A—l 1238 0001

p
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33. In each part, show that the value of the determinant is inde
pendent of 6.

sinO
(a)

— cos U

sinO cosU 0

(b) —cosO sinO 0

sin6 —cos9 sinO +cosU I

r0 bl rd
A=l and B=I

L° i L° f

b a—c

e d—f

35. By inspection, what is the relationship between the following
determinants?

a h c a+A b c

d1=d If andth= d If

gO I g 01

I tr(A)
det(A) = —

2 tr(A2) tr(A)

for every 2 x 2 matrix A.

37. What can you say about an nth-order determinant all of whose
entries are 1? Explain.

38. What is the maximum number ofzeros that a 3 x 3 matrix can
have without having a zero determinant? Explain.

39. Explain why the determinant of a matrix with integer entries
must be an integer.

Working with Proofs

40. Prove that (x1, y1), Cr2, 52), and (x3, y3) are collinear points
if and only if

41. Prove that the equation of the line through the distinct points
(a’, b1) and (ci’, b2) can be written as

y I

bI I =0

b2 I

42. Prove thai if A is upper triangular and B, is the matrix that
results when the ith row and jth column of A are deleted, then
Ba is upper triangular if I < j.

True-False Exercises

TE In parts (a)-(j) determine whether the statement is true or
false, and justify your answer.

(a) The determinant of the 2 x 2 matrix
[a ] is ad + be,

(b) Two square matrices that have the same determinant must have
the same size.

(c) The minor M15 is the same as the cofactor Cu if I + j is even.

(d) If A is a 3 x 3 symmetric matrix, then CU = C,, for all i and j.

(e) The number obtained by a cofactor expansion of a matrix A is
independent of the row or column chosen for the expansion.

(f) If A is a square matrix whose minors are all zero, then
det(A) = 0.

(g) The determinant of a lower triangular matrix is the sum of the
entries along the main diagonal.

(h) For every square matrix A and every scalar c, it is true that
det(cA) = cdet(A).

(i) For all square matrices A and B, it is true that

det(A + B) = det(A) + det(B)

(j) For every 2 x 2 matrix A it is true that det(A2) = (det(A))2.

Working withTechnology

Ti. (a) Use the determinant capability of your technology utility
to find the determinant of the matrix

4.2 —1.3 1.1 6.0

0,0 0.0 —3.2 3.4

4.5 1.3 0.0 14.8

4.7 1.0 3.4 2.3

(b) Compare the result obtained in part (a) to that obtained by a
cofactor expansion along the second row of A.

T2. Let A” be then x a matrix with 2’s along the main diagonal,
l’s along the diagonal lines immediately above and below the main
diagonal, and zeros everywhere else. Make a conjecture about the
relationship between a and det(A).

I 2 7 —3

31.
0 I —4 I

0 0 2 7

0 0 0 3

—3 0 0 0

1 2 0 0
32.

40 10 —I 0

100 200 —23 3

cos U

sinU

x

a1

a,

34. Show that the matrices

commute if and only if

36. Show that

.1 Yi I
X2 Y2 I =0

X3 J) I

t

I

—
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Exercise Set 2.2
In Exercises 1—3, verily that det(A) = det(AT). •I

ci e f h

I 4]
2.A=[,

—2]
15.g Ii H

l6d e

[a /3 C1 [a /3

3a 3/3 3c1 i+d b+e c+fi
[2—l 31 [4 2—Il

17. —d —e —f IS. —d —e —f3.A=11 2 41 4.A= 0 2 I I
[5—3 6J —l I 5] 4g 4h 4’r Ii

in Exercises 5—8, find the determinant of the given elementary

matrix by inspection. a + g /3 + /3 c+/ a /3 c

19. d a f 20.1 2d 2e 2f
Fi o o 01 I I II 0 o g h I 1g+3a h+3h i+3c

HO I 0 01
6.[o

i
10 0—5 01 I50 1_3a —3/3 —3c a /3 ci
Lo 0 0 lJ — 21.ld a f 22.1d a f1

g—4d h—4e ‘—I 2a 2/3 2c

r i 0 0 ol Fl 0 0 01
lo 0 i l lo o o 23.Userowreductiontoshowthat

I 0 ol 8.10 Ii I i

Lo 0 0 [o 0 0 ij a b c l=(b_a)(c_a)(cb)
I ‘ /3’ ‘I• - c

• In Exercises 9—14, evaluate the determinant of the matrix

by first reducing the matrix to row echelon form and then using 24. Verify the formulas in parts (a) and (b) and then make a con-

some combination of row operations and cofactor expansion. i jecture about a general result of which these results are special

cases.

ro 0 a31r3 —6 91 F3 6 —1 I II —2 7 —2 I to. (a) det [0 a22

a23J

=

L 0 I sJ [—2 1
a31 a a33[0 0 0 aI4j

F2 1 3 Ii 0 0 a23 a,4
t —3 ol (b) det = a14a,3a3,a41

II 0 I II I 0 a32 a33 a341

11.L
12.1—2 4 IIo 2 I 01 L

a4I a42 a43 a
5 —2 2o i 2 3J

fr In Exercises 25—28, confirm the identities without evaluating

r 5
the determinants directly. 4

—2 —7 0 —4 21 al h1 al+bI+cj ui h1 ci
13.1 0 0 I 0 ii 25.[a2 b2 a,+b2+c2 1d12

b1

I 0 0 2 I I k b3 a3+h3+ci [a3 1,3 c,I

L 0 0 0 i
a2+h:t aj+bitI a1 a, a31

F I —2 3 Ii
26. at +b1 wI +h a3t +h3 = (I — 12) 2 b3

6
Cl Cz C3 i C2 C3

I—I 2 —6 —21 IaI —l—I a —13i L’I Ia I

L2 8 6 iJ I I I27. ti’ +1)2 lb — /33 = —2a2 1)2 C’1

‘ In Exercises 15-22, evaluate the determinant, given that frn3 + /33 (13 — /33 c, a3 /73 C3

a /3 c [ al hI + Ia1 c + rb + sa1 fr’ a,

ci a f = —6 1 28. a: + ta c2 +rh2 +sa21 = h1 /3’

h i [ [ai h3+Ia3 C3 +rb3 +5a31 IC C2 C3[
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Exercise Set 4.1
1. Let V be the set of all ordered pairs of real numbers, and 9. The set of all 2 x 2 matrices of the form

consider the following addition and scalar multiplication op- r0 a
erations on u = (“i. it2) and v = (a1, v): [ I,

u+v= (itj + ut,u2+m), kit = (0,ku’) -

with the standard matrix addition and scalar multiplication.

(a) Compute it + v and ku for it = (—1,2). v = (3, 4), and

k — 3
10. The set of all real-valued functions f defined everywhere on

—

.
the real line and such that 1(l) = V with the operations used

(b) In words, explain why V is closed under addition and in Example 6.
scalar multiplication.

II. Theset olall pairs ofreal numbers of the form (I, x) with the
(c) Since addition on V is the standard addition operation on

R2, certain vector space axioms hold for V because they
operations

areknowntoholdforR. Whichaxiomsarethey? (l,y) + (I, y’) = (l,y+y’) and k(l,y) = .ky)

(d) Show that Axioms 7, 8, and 9 hold. 12. The set of polynomials of the form a,, + a1x with the opera

(e) Show that Axiom 10 fails and hence that V is not a vector tions
space under the given operations.

(a0 + a,x) + (b0 + bix) = (a0 + b0) + (a1 + bi)x

2. Let V be the set of all ordered pairs of real numbers, and and
consider the following addition and scalar multiplication em k(a, + a1x) = (ka.,) ± (ka1)x
erations on it = (01,112) and v = (ci, a,):

13. Verify Axioms 3. 7, 8, and 9 for the vector space given in Ex
u+v= (it + a1 t l,u1 +v2 + I), ku= (ka,,Lu2)

ample 4.

(a) Compute it + v and ku for it = (0,4),v = (I, —3), and

k —2
14. Verify Axioms 1,2,3,7.8,9, and 10 for the vector space given

—

.
in Example 6.

(b) Show that (0, 0) 0.
15. With the addition and scalar multiplication operations defined

(c) Showthat(—l.—1)=O. . .

in Example 7. show that V = R- satisfies Axioms 1—9.

(d) Show that Axiom S holds by producing an ordered pair

—it such that it + (—it) = 0 fort = (°, l2).
16. Verify Axioms 1,2,3,6,8,9, and loforthevectorspacegiven

in Example 8.
(e) Find two vector space axioms that fail to hold.

17. Show that the set of all points in R lying on a line is a vector
l’ In Exercises 3—12 determine whether each set equipped with space with respect to the standard operations of vector ad
thegiven operations is a vectorspace. For those that arenot vector . .

dtuon and scalar muluplicauon if and only if the line passes
spaces identify the vector space axioms that fail. through the origin.

3. The set of all real numbers with the standard operations of 18. Show that the set of all points in P lying in a plane is a vector
addition and mulliphcation. space with respect to the standard operations of vector addi

tion and scalar multiplication if and only if the plane passes
4. The set of all pairs of real numbers of the form Cx, 0) with the through the origin.

standard operations on R.
- In Exercises 19—20, let V be the vector space of positive real

5. The set of all pairs of real numbers of the form (x, y). where numbers with the vector space operations given in Example 8. Let

x 0. with the standard operations on it = a be any vector in V, and rewrite the vector statement as a

statement about real number&

6. The set of all n-tuples of real numbers that have the form 19. —u = (—I )u
(xx,..., x) with the standard operations on R”.

20. ku = 0 if and only ifk = 0 or it = 0.

7. The set of all triples of real numbers with the standard vector

addition bul with scalar multiplication defined by Working with Proofs

k(x, v, z) = (k2x, k2v, k2z) 21. Theargument that followsprovesthatifu. v,andwarevectors
-

-
in a vector space V such that a + w = v + iv, then it = v (the

8. The set of all 2 x 2 invertible matrices with the standard ma- cancellation law for vector addition). As illustrated, justify the

trix addition and scalar multiplication, steps by filling in the hlanks.
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U + w = V + ‘V Hypothesis

(u + w) + (—n) = (v — w) + C—n) Add —w to both sides.

u + [w + (—w)] = V + [‘V + (—w)]
U + 0 = v + 0

U = V

22. Below is a seven-step proof of part (b) of Theorem 4. LI.
Justify each step either by stating that it is (rue by hypothesis
or by specifying which of the ten vector space axioms applies.

Hypothesis: Let u be any vector in a vector space V, let 0 be

the zero vector in V, and let k be a scalar.

Conchisiopi: Then kO = 0.

Proof (I) kO+ku=k(0+u)

(2) =ku

(3) Since ku is in V. —k-u is in V.

(4) Therefore, (kO + ku) + (—ku) = /a, + (—ku).

(5)

(6)

(7)

kO + (ku + (—ku)) = k-u + (—ku)

kO + 0 = 0

kO = 0

In Exercises 23—24, let u be any vector in a vector space V.
Give a step-by-step proof of the stated result using Exercises 2t

and 22 as models for your presentation. I

23. Ou = 0 24. —u=(—l)u

In Exercises 25—27, prove that the given set with the stated

operations is a vector space. I

25. The set V = (0) with the operations of addition and scalar
multiplication given in Example 1.

26. The set R of all infinite sequences of real numbers with the
operations of addition and scalar multiplication given in Ex
ample 3.

27. The set Ma,. of all m x ,z matrices with the usual operations
of addition and scalar multiplication.

28. Prove: If u is a vector in a vector space V and k a scalar such

that k-u = 0, then either k = 0 or u = 0. [Suggestion: Show
that if ku = 0 and k #0, then u = 0. The result then follows
as a logical consequence of this.]

True-False Exercises

TF. In parts (a)—(fl determine whether the statement is true or
false, and justify your answer.

(a) A vector is any element of a vector space.

(b) A vector space must contain at least two vectors.

(c) If u is a vector and k is a scalar such that ku = 0, then it must
be true that k = 0.

(d) The set of positive real numbers is a vector space if vector
addition and scalar multiplication are the usual operations of
addition and multiplication of real numbers.

(e) In every vector space the vectors (—flu and—u are the same.

(f) In the vectorspace F(—, =) any function whose graph passes
through the origin is a zero vector.

- :..-, -‘& tn a a ra.,aan.wa a;,., - _Cfl-ca!a

4.2 Subspaces
Ii is often the case that some vector space of interest is conlained ‘ithin a larger vector space

s hose properties are known. In this section tcc will show how to recognize when this is the

case. we will explain liov the properties oft he larger Vector CC can be used to o hiain

properties of the smaller eetor space, and we will give a ariety of important examples.

We begin with some terminology.

era-

wrs
(the

v the

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is itself

a vector space under the addition and scalar multiplication defined on V.

In izeneral, to show that a nonempty set II’ with two operations is a vector space one

must verify the ten vector space axioms. However, if W is a subspace of a known vector

space V, then certain axioms need not be verified because they are “inherited” from V.

For example. it is nor necessan- to verify that a + v = v -1- u holds in W because it holds

for all vectors in V including those in W. On the other hand, it is necessary to verify
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Theorem 4.2.4 can be viewed as a statement about matrix transformations by letting

TA: R0 — R0 be multiplication by the coefficient matrix A. From this point of view
the solution space of Ax = 0 is the set of vectors in fr that TA maps into the zero
vector in R”. This set is sometimes called the kernel of the transformation, so with this
terminology Theorem 4.2.4 can be rephrased as follows.

THEOREM 4.2.5 IfA is an in x n matrix, then the kernel of the matrix transformation

TA: r —* fr’ is a subspace of R”.

It is important to recognize that spanning sets are not unique. For example, any nonzero
vector on the line in Figure 4.2.6a will span that line, and any two noncollinear vectors

in the plane in Figure 4.2.6b will span that plane. The following theorem, whose proof

is left as an exercise, states conditions under which two sets of vectors will span the same

space.

THEOREM 4.2.6 IfS = {v1, V2 r) and S’ = [w1, W2 wk} are nonempty sets
of vectors in a vector space V, then

span{vj, V2 Vr} = span{wi, w2 ,...,Wk}

j[and only f each vector in S is a linear combination of those in 5’, and each vector in
5’ isa linear combination of those in S.

Exercise Set 4.2
I. Use Theorem 4.2.1 to determine which of the following are

subspaces of l?.

(a) All vectors of the form (a, 0,0).

(b) All vectors of the form (a, I, I).

(c) All vectors of the form (a, b, c), where b = a + c.

(d) All vectors of the form (a, b, c), where b = a + c + 1.

(e) All vectors of the form (a, b, 0).

2. Use Theorem 4.2.! to determine which of the following are
subspaces of Ma,,.

(a) The set of all diagonal n x n matrices.

(b) The set of all n x n matrices A uch that det(A) = 0.

(c) The set of all n x n matrices A such that tr(A) = 0.

(d) The set of all symmetric ii x n matrices.

(e) The set of all,i x n matrices A such that AT = —A.

(f) The set of all?! x n matrices A for which Ax = 0 has only
the trivial solution.

(g) The set of a!! n x n matrices A such that AB = BA for
some fixed n x n matrix B.

3. Use Theorem 4.2.1 to determine which of the following are
subspaces of P3.

(a) All polynomials a0 + a15 + a3x2 + a3x3 for which
a0 = 0.

(b) All polynomials a0 + a1x + a2x2 + a353 for which
a0 + a1 + a2 + a3 = 0.

(c) Al! polynomials of the form a0 + a15 + a252 + a3x3 in
which a,1, a1, a,, and a3 are rational numbers.

(d) All polynomials of the form a0 + a15, where a,, and a1 are
real numbers.

4. Which of the following are subspaces of F(—, )?

(a) Al! functions f in F(—, ) for which f(0) = 0.

(b) All functions fin F(—, ) for which f(0) = I.

(c) All functions fin F(—, ) for which f(—x) = f(s).
(d) All polynomials of degree 2.

5. Which of the following are subspaces of W?

(a) All sequences yin R of the form
v=(u,0,v,O,v,0,...).

The LinearTransformation
Viewpoint

A Concluding Observation
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(b) All sequences yin R of the form
(u, I, v. I. v, I.. .

(c) All sequences v in R’ of the form
v = (v, 2v, 4o, 8v, 16v, . .

(d) All sequences in R whose components are 0 from some

point on.

6. A line L through the origin in H2 can be represented by para
metric equations of the form .r = at, y = In, and z = ci. Use
these equations to show that L is a subspace of H3 by showing

that if y1 = (Il, Yt. zi) andy, = (x,, y, z2) are points on L

and k is any real number, then kv1 and v’ + v2 are also points

7. Wbich of the following are linear combinations of
u = (0, —2.2) andy = (1,3.—I)?

(b) (0,1.5) (c) (0,0,0)

8. Express the following as linear combinations of u = (2, 1, 4),

v = (I, —1,3), and w = (3.2,5).

(a) (—9,—7,—l5) (b) (6, 11,6) (c) (0,0,0)

9. Which of the following are linear combinations of

A=[ . B=[ ¶ c=[

(b) [ ]
10. In each part express the vector as a linear combination of

p1 = 2 + x + 4x2, p, = I — .r + 312, and
= 3 + lv + it2.

(a) —9— 7x — l5x2 (b) 6+ lix +612

(c) 0 (d) 7+8x+9x

II. In each part, determine whether the vectors span H3.

(a) v1 = (2,2,2), y2 = (0,0,3), y3 = (0, 1, I)

(b) y1 = (2, —1,3), y, = (4,1,2), v3 = (8, —1,8)

12. Suppose that y1 = (2. 1.0,3). v, = (3, —1,5.2), and

= (—1.0,2, 1). Which of the following vectors are in

span{v:, ‘2, ‘3)?

(a) (2, 3, —7, 3) (b) (0, 0, 0, 0)

(c) (I, 1,1, I) (d) (—4,6, —13,4)

13. Determine whether the following polynomials span P2.

pi =I—x+2x2, p,=3+x,

p3=5—x+4x1, p4=—2—2x±1r2

14. Let f = cos1x and g = sin2 x. Which of the following lie in
the space spanned by I and g?

(a) cos2x (b) 3 + .r2 (c) I (d) sinx (e) 0

15. Determine whether the solution space of the system Ax = I)

is a line through Ihe origin, a plane through the origin, or the

origin only. If it is a plane, find an equation for it. If it is a
line, find parametric equations for it.

—l I

(a)A= 3 —1 0 (b)A= 2

2 —4 —

I —3 I I —I

(c)A= 2 —6 2 (d)A= 2 —l

3—9 3 3 1

16. (Calculus required) Show that the following sets of functions

are subspaces of F(—, m).

(a) All continuous functions on (—=, =).

(b) Al] differentiable functions on (—, ),

(c) All differentiable functions on (—s, ) that satisfy

I’ ± 2f= 0.

17. (Calculus required) Show that the set of continuous functions

= f(x) on [a, b] such that

is a subspace of Cia, h].

f(x) dx = 0

18. Show that the solution vectors of a consistent nonhomoge

neous system of m linear equations in a unknowns do not

form a subspace of H1.

19. In each part, let T,: R2 — H2 be multiplication by A, and
let u1 = (1,2) and u, = (— I, 1). Determine whether the set

(T4(ui), T.4(u2)) spans H2.

(a)A=[
l] (b)A=[i

20. In each part, let T,5: H1 82 be multiplication by A, and let

U1 = (0,1,1) and U’ = (2, —1,1) and u3 = (1,1, —2). De
termine whether the set {TA(UI), TA(u’), TA(uJ) spans H2.

Fo I 0
(b) A=[1

1 —3

21. If T,4 is multiplication by a matrix A with three columns, then

(he kernel of TA is nne of four possible geometric objects. What

are they? Explain how you reached your conclusion.

22. Let =(l,6,4), v’=(2,4,—I), v3=(—i,2,5), and
WI = (1, —2, —5), .y2 = (0.8.9). Use Theorem 42.6 to show

that span(v1 , v, v3j = span(w: . iy,

23. The accompanying figure shows a mass-springsystem in which

a block of mass ‘a is set into vibratory motion by pulling the

block beyond its natural position at x = 0 and releasing it at

timer = 0. If friction and air resistance are ignored, then the

x-coordinate x(t) of the block at time (is given by a function

of the form

on L.

I

23

53

08

(a) (2. 2. 2)

4

II

r 6 —g
(a)

[I —8

r— s
(c)

—l
7

(a) A
=

1 0

—l

x(t) = c1 cos cot + c, sin cot
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where w is a fixed constant that depends on the mass of the
block and the stiffness of the spring and c, and c2 are arbi
trary Show thai this set of functions forms a subspace of
C(—x, r).

Natural position

RPMMMMMMS

Released

. — — — —

A Figure Ex-23

Working with Proofs

24. Prove Theorem 4.2.6.

True-False Exercises

TE. In parts (a)—(k) determine whether the statement is true or
false, and justify your answer.

(a) Every’ subspace of a vector space is itself a vector space.

(b) Even vector space is a subspace of itself.

(c) Every subset of a vector space V that contains the zero vector
in V is a subspace of V.

(d) The kernel of a matrix transformation TA: R” — fr’ is a sub-
space of R.

(e) The solution set of a consistent linear system Ax = b of in

equations inn unknowns is a subspace of R”.

(f) The span of any finite set of vectors in a vector space is closed
under addition and scalar multiplication.

Linear Independence and
Dependence

(g) The intersection of any’ two subspaces of a vector space V is a
subspace of V.

(h) The union of any two subspaces of a vector space V is a sub-
space of V.

(i) Two subsets of a vector space V that span the same subspace
of V must be equal.

(j) The set of upper triangularii x n matrices is a subspace of the
vector space of all ii x it matrices.

(k) The polynomials x — I, (x — J)2, and (x — l) span Pj.

Working withTechnology

TI. Recall from Theorem 1.3.1 that a product Ax can be expressed
as a linear combination of the column vectors of the matrix A in
which the coefficients are the entries of x. Use matrix multiplica
(ion to compute

v=6(8,—2,I,—4)+17(—3,9,lt,6)—9(13,—l,2,4)

T2. Use the idea in Exercise TI and matrix multiplication to de
termine whether the polynomial

p = I + x + x + x

Stretched
0

is in the span of

p1=8—2s+x2—4x3, p,=—3+9x+11x2+6x3,

p = l3x+1r+4x’

T3. For the vectors that follow, determine whether

span{v1, v2, v3) = span{w1, w2, w31

v1 =(—I,2,O,I,3), v2=(7,4,6,—3,I),

V3 (—5, 3, 1, 2, 4)

= (—6,5, 1,3,7), w2 = (6,6,6—2,4),

= (2,7.7,—I, 5)

In this section we \ill consider the question of ‘slicther the vectors in a given el are
interrelated in the sense thaI one or more of them can be expressed as a linear combination
of the others. This is imporlanl to kntn in applications hecaue lhe existence of such

relationships often signals thaI sonic kind of complication is likely to occur.

In a rectangular xv-coordinate system every vector in the plane can be expressed in
exactly one way as a linear combination of the standard unit vectors. For example, the
only way to express the vector (3, 2) as a linear combination of I = (1, 0) and j = (0, 1)
Is

(3,2)=3(1,0)+2(0,l)=3i+21 (I)

4.3 Linear Independence


