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fr EXAMPLE 8 Linear Independence Using the Wronskian

Use the Wronskian to show that Ij = I, f = e, and f = are linearly independent
vectors in Cx(_, )

Solution The Wronskian is

I c’ e’

WCv) = 0 eX 2e” = 2e3r

0 e’ 4e”

This function is obviously not identically zero on (—x, ), so f, 2’ and f3 form a linearly
independent set. 4

OPT 0 NA L We will close this section by proving Theorem 4,3.1.

Proof of Theorem 4.3.1 We will prove this theorem in the case where the set S has two
or more vectors, and leave the case where S has only one vector as an exercise. Assume
first that S is linearly independent. We will show that if the equation

k1v1 +k24±’’’+krVr =0 (Il)

can be satisfied with coefficients that are not all zero, then at least one of the vectors in
S must be expressible as a linear combination of the others, thereby contradicting the
assumption of linear independence. To be specific. suppose that k1 0. Then we can
rewrite (11) as

/ k’\ / kr\

which expresses v1 as a linear combination of the other vectors in S.
Conversely, we must show that if the only coefficients satisfying (11) are

k1=0, k,=0 k=0

then the vectors in S must be linearly independent. But if this were true of the coeffi
cients and the vectors were not linearly independent, then at least one of them would be
expressible as a linear combination of the others, say

Vt = C’V’ ± ‘‘‘ + r4r

which we can rewrite as

Vt + Hc2)V1 + ‘‘‘ + (cr)V, = 0

But this contradicts our assumption that (II) can only be satisfied by coefficients thai
are all zero. Thus, the vectors in S must be linearly independent. 4 II

Exercise Set 4.3 12.

1. Explain why the following form linearly dependent sets olvec’ 2. In each part, delermine whether the vectors are linearly mdc
tom. (Solve this problem by inspection.) pendent or are linearly dependent in R1. 13.

(a) 1 = (—1,2,4) and u, = (5, —10, —20) in R’ (a) (—3,0,4), (5, —1,2), tl, 1.3)

(b) (—2,0, I). (3,2,5), (6, —1,1), (7,0, —2)
(b) u1 = (3, —I), m = (4, 5), u (—4,7) in R2

3. In each part, delermine whether the vectors are linearly mdc
(c) p1 = 3—Zr + x and p2 = 6— 4.v + 2x In P2 pendent or are linearly dependent in R4.

r—3 4] 1 —41 (a) (3,8,7, —3), (1,5,3,—I), (2, —1,2,6), (4,2,6,4) 14.
(d)A=[

2 ojandE=L7 0jinM22 (b)(3,0,—3,6), (0,2,3,1), (0—2—2,0), (—2,1,2,1)
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4. In each part, determine vhether the vectors are linearly inde

pendent or are linearly dependent in P2.

(a) 2—x+4x2, 3+6x+2x2, 2+IOx—4x2

(b) l+3x+3.r2.x±4x2, 5+6x+3x2. 7+2-r—x2

(a)

whether the set (TA(uI), TA(u2). TA(u,)) is linearly indepen

dent in R

5. In each part, determine whether the matrices are linearly in

dependent or dependent.

Ii o1 rI 21 Fo fl
I I I I, I mM,,
12 21 21

I 2

(a)A= 1 0 —3

2 2 0

(b) H
[o

0

0

(5.

0

0

(b)A= I —3

2 2 0

1°
[o

0

0

Ii ro 0 01oj’ Lo oj inM

Are the vectors v1, y2, and v3 in part (a) of the accompany

ing figure linearly independent? What about those in part (by?

Explain.

6. Determine all values olk for which the following matrices are

linearly independent in M22.

• [
(:1

fr

• ‘1

7.

El 01 1—’ 01 12 0

[i k] [ k 1]’ [I 3

in )?.
In each part, determine whether the three vectors lie in a plane

(a) v1 =(2,—2,0), v,=(6,l,4), v3=(2,0,—4)

8.

(b) V1 = (—6,7,2), v, = (3,2,4), V3 = (4. —1,2)

(a)

A

In each part. determine whether the three vectors lie on the

same line in R3.

Figure Ex-ib

(a) Vt = (—1,2,3), V3 = (2, —4, —6), v3 = (—3,6,0)

(b)

(b) v1 = (2, —1,4), v, = (4,2, 3), v3 = (2,7, —6)

16.

9. (a)

(c) i = (4,6,8), v, = (2,3,4), Vj = (—2, —3—4)

By using appropriate identities, where required, determine

which of the following sets of vectors in F(—, ) are lin

early dependent.

Show that the three vectors V1 = (0, 3, I, — I),

= (6, 0, 5, I), and v3 = (4, —7, I, 3) form a linearly

dependent set in R4

(a) 6, 3sin2x, 2cosx

(c) I, sins, sin2x

10.

(b) x, cosx

(b) Express each vector in part (a) as a linear combination of

the other two.

(e) (3— )2, — 5, 5

17.

(d) cos2x, sin1x, cos2x

((‘alculus required) The functions

(f) 0, cos3nx, sin53nx

(a) Show that the vectors y1 = (1,2,3,4), V1 = (0, 1.0, 1),

and Vj = (1,3,3,3) form a linearly dependent set in R4,

fi(x)=x and f2(x)=cosx

(b) Express each vector in part (a) as a linear combination of

the other two.

are linearly independentin F(—. ) because neither function

is a scalar multiple of the other. Confirm the linear indepen

dence using the Wronskian.

18.

II. For which real values of A do the following vectors form a

linearly dependent set in 8?

((‘alculus required) The functions

= (A, -,-fl, V3 = (-,x, -i), V =

pendent?
12. Under what conditions is a set with one vector linearly mdc

f1(x) = sins and f,(x) = coss

13. In each
let u1 =

are linearly independentin F(—, ) because neither function

is a scalar multiple of the other. Confirm the linear indepen

dence using the Wronskian.

part, let 1.,: P2 — R be multiplication by A. and

(I, 2) and ii’ = (— I, I). Determine whether the set

TA(u,)) is linearly independent in 82.

(a) A =
H —l

[o 2

19. (calculus required) Use the Wronskian to show that the fol

lowing sets of vectors are linearly independent.

(a) I. x, e

(b)A=[
I —I]

—7

ib) I, x

14. In each part, let TA: R3 —+ R be multiplication by A, and let

u1 =(I,0,0),u,=(2,—I, l),andu;=(0, I, I). Determine

20. (calculus required) Use the Wronskian to show that the func

tionsfi(s) = c’, fr(s) = xc’, and f3(x) = x2e’ arelinearly

independent vectors in C(—, ).

21. (calculus required) Use the Wronskian to show that the func

tions f1(x) = sins, f,(x) = cosx, and f3(x) = xcosx are

linearly independent vectors in C(—, )
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22. Show that for any vectors ii, v, and w in a vector space V, the (a) A set containing a single vector is linearly independent.

vectors ii — v, v — iv, and iv — u form a linearly dependent set.
(b) The set of vectors (v, kv) is linearly dependent for every

23. (a) In Example I we showed that the mutually orthogonal vec- scalar k.
tors i, j, and k form a linearly independent set of vectors in
R3. Do you think that every set of three nonzero mutually (c) Every linearly dependent set contains the zero vector.
orthogonal vectors in R3 is linearly independent? Justify
your conclusion with a geometric argument. (d) If the set of vectors {vi, v2, v,) is linearly independent, then

(b) Justifyyourconclusinnwithanalgebraicargument. [hint: (kvi , kv2, b3) is also linearly independent for every nonzero

Use dot products.] scalar k.

(e) if v1,.., v,, are linearly dependent nonzero vectors, then
Working with Proofs at least one vector v is a unique linear combination of
24. Prove that if (vi, v2, v3 is a linearly independent set of vectors, Vi vt_i.

thensoare{vi,v2),(vi,vj), (v,vj), {vi1,(v1,and(v3).
(f) The set of 2 x 2 matrices that contain exactly two l’s and two

25. Prove that ifs = (vi, v2 --V,) is a linearly independent set U’s isa linearly independent set in Al22.
of vectors, then so is every nonempty subset of S.

- - - (g) The three polynomials (x — I )(x + 2), x(x + 2), and
26. Prove that ifs = (vi, v,, v31 is a linearly dependent set of vec- . -

- - - x(x — I) are linearly independent.
tors in a vector space V, and v4 is any vector in V that is not
inS, then (vi, v,, v, v4) is also linearlydependent. (h) The functions fi and f2 arelinearlydependentif thereis areal

27. Prove that ifS = (vi, v, ,...,v,} isa linearly dependent set of numberx rJchthatkifi(x) + k2f:(x) = Oforsomescalarski

vectors in a vector space V, and ifv+i v, are any vectors and k2.

in V that are not inS, then (vi, v2 ,,..,vr, vr+I v) isalso - -

linearly dependent. Working withTechnology

TI. Devise three different methods for using your technology util
28. Prove that in F’ every set with more than three vectors is lin- .

.- ity to determine whether a set of vectors in R is linearly indepen
early dependent. dent, and then use each of those methods to determine whether

29. Prove that if (vi, v2} is linearly independent and v3 does not lie the following vectors are linearly independent.
in spanjví, v,), then (v1, v,, v3) is linearly independent.

vi = (4, —5,2,6), v, = (2, —2, 1,3),
30. Use part (a) of Theorem 4.3.1 to prove part (b).

v3 = (6, —3,3,9), v4 = (4, —1,5,6)
31. Prove part (b) of Theorem 4.3.2. . .

T2. Show that S = (cost, sin:, cos2t, sin 21) is a linearly inde
32. Prove part (c) of Theorem 4.3.2. pendent set in C(—=, ) by evaluating the left side of the equation

True-False Exercises ci cost + e, sin: + c3 cos 2: + c4 sin 2: = 0

TE. In parts (a)•—(h) determine whether the statement is true or at sufficiently many values oft to obtain a linear system whose
false, and justify your answer, only solution is Ci = c2 = c3 = = 0.

44 Coordinates and Basis
We usually think of a line as being one—dimensional, a plane as two—dimensional, and the
space a round us as three—dimensional. It is the primary goal of this section and the next to
make this inttntive notion of dimension precise. In this section we will discoss coordinate
systems in general vector spaces and lay the groundwork for a precise definition of
dimension in the next section.

Coordinate Systems in in analytic geometry one uses rectangular coordinate systems to create a one-to-one cor
LinearAlgebra respondence between points in 2-space and ordered pairs of real numbers and between

points in 3-space and ordered triples of real numbers (Figure 4.4.1). Although rectan
gular coordinate systems are common, they are not essential. For example, Figure 4.4.2
shows coordinate systems in 2-space and 3-space in which the coordinate axes are not
mutually perpendicular.
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or, in terms of components,

(5,—l,9)=ci(1,2,l)+ci(2,9,O)+ci(3.3,4)

Equating corresponding components gives

c1 +2c2+3c3= 5

2ct + 9c2 + 3c3 = —l

+4c3= 9

Solving this system we obtain c1 = I, c, = —I, C3 = 2 (verify). Therefore,

()s = (1, —1,2)

Solution (b) Using the definition of (v)s, we obtain

v = (—l)v1 + 3v2 + 2v3

=(—I)(1,2, O+3(2,9,0)+2(3,3,4)=(ll,3l,7) 4

-

Exercise Set 4.4
1. Use the method of Example 3 to show that the following set

of vectors forms a basis for R2.

((2, I). (3, 0)}

2. Use the method of Example 3 to show Ihal the following set
of vectors forms a basis for R3.

((3, 1, —4), (2, 5, 6), (1,4, 8))

3. Show that the following polynomials form a basis for P2.

x2+I, x2—l, 2.r—I

4. Show that the following polynomials form a basis for P,.

l+ I- l—x2, l-x3

5. Show that the following matrices form a basis for M.

[3 61 [0—li [0_si [0

[3 —6J’ [—t nJ [—12 —4j’ [—I 2

6. Show that the following matrices form a basis for M.

[ii] [i —Ii [o —Il [t 0

LI i] [o oJ’ [i nj [o o

7. in each part, show that the set of vectors is not a basis for R3.

(a) ((2, —3, 1), (4, t, I), (0, —7.1))

(b) ((1. 6.4). (2,4, —I). (—1.2.5))

8. Show that the following vectors do not form a basis for P2.

1—3x+2x2, l+x+4x2, I—Li

9. Show that the following matrices do not form a basis for M22.

—Ii [o —l

oJ’ [I I
[1 01 [2 —21 [I

[I i] [3 2] [I

In. Let V be the space spanned by v1 = cot2 x, v = sin1 x,
= cos2x.

(a) Show that S = {v1, v,, v3) is not a basis for V.

(b) Find a basis for V.

II. Find the coordinate vector of w relative to the basis

S = {ui, ui} for R2.

(a) u = (2. —4), U2 = (3, 8); iv = (II)

(b) u, = (I, 1), u2 = (0, 2); iv = (a,b)

12. Find the coordinate vector of iv relative to the basis

S = {u1, u) for R2.

(a)ui=(t.—l),u=(I,I);w=(t,0)

(b) u1 = (I, —I), a. = (I, i; iv = (0,1)

13. Find the coordinate vector of v relative to the basis

S = {vi, v,, vj) for R3.

(a) v = (2, —1,3); v1 = (1,0,0), v2 = (2,2,0),
= (3,3,3)

(b) v=(5. —12.3); v = V.2,3), v=(—4.5,6),
= (7, —8,9)

14. Find the coordinate vector of p relative to the basis

5= (p1,p1.pd for 1.

(a) p = 4—ic +x2; p1 = I, P2 = , p3 =

(b) p=2—x+x2; p1 = I +x, p2 = I +x2, p3
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In Exercises 15—16, first showthat theset S = (A, A. A3, .44)

is a basis for M22. then express A as a linear combination of the
vectors in S and then find the coordinate vector of A relative
toS. 4

and ii,. Find the x’v’-coordinates of the points whose xy
coordinates are given.

(a) (v’s, I) (b) (1,0) (c) (0,1) (d) (a, b)

l5.A={ , A= A=[ .

A4=[0 ,]: A=[1 ]
l&Ai=[ , &=[ , A=[ ,

00 62
A4=[1 of A=[5 31

fr In Exercises 17—IK, first show that the setS = (p1 P2’ p) is a
basis for F1, then express p as a linear combination of the vectors
in S, and then find the coordinate vector of p relative to S. •:
17.p1=1+x+x3,p1=x+x2,p3=x2;

p=7—x+2x2

I&p=l+2x+x2.p2=2±9x.p1=3+3x+4x2;
p = 2 ÷ l7x — 1t

19. In words, explain why the sets of vectors in parts (a) to (d) are
no: bases for the indicated vector spaces.

(a) Ut = (I, 2), a, = (0, 3), u3 = (1,5) for R2

(b) Ut = (—1,3,2), u2 = (6,1,1) for R3

(c) p1 = I + x + x2, p, = x for P2

(A=[ . B=fl , c=[ ,

forM,,
L4 2J —

20. In any vector space a set that contains the zero vector must be
linearly dependent. Explain why this is so.

21. In each part, let TA: R3 — R3 be multiplication by A, and let
(Ct, e1, e3) be the standard basis for R3. Determine whether
the set (TA(et), T4(c1), TA(e3)) is linearly independent in R2.

I 1 1 112

(a)A= 0 I —3 (b)A= 0 I I

—l 2 0 —l 2 I

22. In each part, let TA: R1 .-. R3 be multiplication by A, and let
u = (I, —2,—I). Find the coordinate vector of TA(u) relative
to the basis S = ((I. 1.0), (0,1,1), (1,1,1)1 for l?.

23. The accompanying figure show’s a rectangular .rv-coordin
ate system determined by the unit basis vectors i and j and
an xv’-coordinate system determined by unit basis vectors u

24. The accompanying figure shows a rectangular xy-coordinuie
system and an x’v’-coordinate system with skewed axe& As
suming that I-unit scales are used on all the axes, find the x’y’
coordinates of the points whose xy-coordinates are given.

(a) (1,1) (b) (1,0) (c) (0,1) (d) (a, b)

4 Figure Ex-24

25. The first four Hermite polynomials [named for the French
mathematician Charles Hermite (1822—1901)] are

I, 2:, 2+4t2, —12,±8:

These polynomials have a wide variety of applications in
physics and engineering.

(a) Show that the first four Hermite polynomials form a basis
for P.

(b) Let B be the basis in part (a). Find the coordinate vector
of the polynomial

relative to B.

pQ) = —1—4: + 8(2 + 8r

26. The first four Laguerre polynomials [named for the French
mathematician Edmond Laguerre (1834—1886)] are

1, 1—:, 24r+P, 6_l8:+9:2_13

(a) Show thai the first four Laguerre polynomials form a basis
for P3.

(b) Let B be the basis in part (a). Find the coordinate vector
of the polynomial

pQ) = —10: + 92 (3

y andy’

4 Figure Ex-23

-

, ‘ xandx

2 —l 0

(a)A= I I

0 —l 2

010

(b)A= I 0 I

001 1’
relative 10 B
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6

lwLy= —l . lq1s=O jB]5

3

(a) Find w ifs is the basis in Exercise 2.

(b) Find q ifS is the basis in Exercise 3,

(c) Find B ifs is the basis in Exercise 5.

28. The basis that we gave for M in Example 4 consisted of non-

invertible matrices. Do you think that theft is a basis for Mv,

consisting of invertible matrices? Justify your answer.

Working with Proofs

29. Prove that R isan infinite-dimensional vector space.

30. Let TA: R —* R” be multiplication by an invertible matrix

A, and let (u1, u2 u be a basis for R’, Prove that

(T4(ui), TA(02). . . ., T,4(u,)) is also a basis for R.

31. Prove that if V is a subspace of a vector space W and if V is

infinite-dimensional, then so is W.

True-False Exercises

TF. In parts (a)—(e) determine whether the statement is true or

false, and justify your answer.

(a) If V = span(vj vt), then (vj v,} is a basis for V.

(b) Every linearly independent subset of a vector space V is a

basis for V.

(c) If (v1, v, vJ is a basis for a vector space V. then ev

ery vector in V can be expressed as a linear combination of

(d) The coordinate vector of a vector x in IV’ relative to the stan

dard basis for W is x.

(e) Every basis of P3 contains at least one polynomial of degree 3

or less.

Working withTechnology

TI. Let V be the subspace of P3 spanned by the vectors

p1=l+Sx—3x2—1lx3, p2=7+4x—x2+2x3,

, 3 , 3
p1=5+x+9.r±2x , p4=3—x-r7r-i-Sx

(a) Find a basis S for V.

(b) Find the coordinate vector of p = 19 + l8x — 13x2 — IOx

relative to the basis S you obtained in part (a).

Ti Let V be the subspaee of C(—x, ) spanned by the vectors

in the set

B =(l,cosx,cos2x,cos3x,cos4x,costxj

and accept without proof that B is a basis for V. Confirm that

the following vectors are in V. and find their coordinate vectors

relative to B.

I, f =cosx, I =cnslr, f3=cos3x,

f4=cos4x, f5=cos5x

We showed in the previous section that the standard basis for k’ has a vectors and hence

Number of Vectors in a
Basis

that the standard basis for R3 has three vectors, the standard basis fr !?2 has two vectc rs, and

the standard hasi.s for I?I (= I?) has one vector. Since we think of space as three-dimensional.

a plane as two-dimensional, and a line as one-dimensional, there seems to be a link between

the number of vectors in a basis and the dimension of a veclor space. We will develop this

idea in this section.

Our first goal in this section is to establish the following fundamental theorem.

THEOREM 4.51 All basesfor afinhe-dimensional vector space have the same number

of vectors.

To prove this theorem we will need the following preliminary result, whose proof is

27. Consider the coordinate vectors

4

4.5 Dimension

:tor

:nch

lasis

ctor

deferred to the end of the section.
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Exercise Set 4.5
In Exercises I—f,, find a basis for the solution space of the ho- 14. Let (v’. v. v3 be a basis for a vector space V. Show that

mogeneous linear syslem, and find the dimension of that space. {u1. u1, u3) is also a basis, where u1 = v, u2 = v1 + v, and

U3 = V + V3 + V3.

x1+x2— x3=0 2.3x1+x2+x,+x4=0
15. The vectors v1 = (I, —2,3) and v, = (0,5, —3) are linearly

—it1 —x’+2x,=0 5x1 —x2+x3—x4=0
independent. Enlarge (v,. v2) to a basis for R1.

+ x3=0 I16. The vectors = (l,0.0,O) and v: = (1.1,0,0) are linearly

3. 2x, + x2 + 3x, = 0 4. x1 — 4x2 + 3x3 = 0 independent. Enlarge (vi, v2} to a basis for R3.

x1 +5x3=0 2x1—8x2+6x3—2x4=0

x2 + x3 = 0 17. Find a basis for the subspace of ft3 that is spanned by the

vectors
5. x1—3x,+ x3=0 6. x+ y+ z=0

2x1—6x3±2x3=0 3x+2v—2z=O v1=(l,0,0), v=(1,0,i), v1=(2,0,l), v4=(0,0,—l)

3x1—9x2+3x3=0 4x+3y— z=O
18. Find a basis for the subspace of ft4 that is spanned by the

6x+5y+ z=O
vectors

7. In each part. find a basis for the given subspace of R3, and

state its dimension. V1 = (1,1,1,1), v, = (2,2,2,0), V3 = (0.0,0,3).

= (3, 3, 3, 4)
(a) The plane 3x

—
2y + Sz = 0.

(b) The plane x —y = 0. 19. In each part, let TA: ft1 — ft3 be multiplication by A and find

(c) The line x = 2z, y = —:, z = 4:. the dimension of the subspace of 3 consisting of all vectors

x for which T(x) = 0.
(d) All vectors of the form (a, b, c), where!, = a ± c. ri I ol [I 2 ol

8. In each part, find a basis for the given subspace of R4, and (a) A = II 0 1 I (b) A = II 2 0 I
state its dimension. I I I I

LI 0 lJ LI 2 0J

(a) All vectors of the form (a, b, c, 0). [ 1 0 ol
(b) All vectors of the form (a, b, c, d), where d = a + band I

(c)A= —l I UI
c=a—b, I I lj

(c) All vectors of the form (a, b, c, d), where a = b = c = d.

20. In each part. let TA be multiplication by A and find the dimen
9. Find the dimension of each of the following vector spaces.

sion of the subspace ft4 consisting of all vectors x for which

(a) The vector space of all diagonal ii x n matrices. TA (x) = 0,

(b) The vector space of all symmetric to x to matrices, ro UI

(a)A=I (b)A= —I 1 0 DI(c) The vector space of all upper triangular to x to matrices. 1 1 0 2
— Ii [

I

I—I 4 0 0
10. Find the dimension of the subspace of P3 consisting of all L J 1 0 0 lj

polynomials a0 + a1x + a3x ± a3x3 for which a0 = 0.

11. (a) Show that the set W of all polynomials in P2 such that Working with Proofs

p(l) = 0 is a subspace of P2. 21. (a) Prove that for every positive integer ii. one can find ii + I

(b) Make a conjecture about the dimension of W. linearly independent vectors in F(—, t). [Hint: Look

for polynomials.]
(c) Confirm your conjecture by finding a basis for W,

(b) Use the result in part (a) to prove that F(—, ) is infinite-

12. Find a standard basis vector for ft3 that can be added to the dimensional.
set (v1, v2) to produce a basis for ft’.

(c) Prove that C(—, ), C”(—x, ), and C(—, t) are
(a) v1 = (—1.2,3), v2 = (1. —2, —2) infinite-dimensional.

(b) v1 = (I, —1,0), v, = (3,1, —2)
22. Let S be a basis for an n-dimensional vector space V. Prove

13. Find standard basis vectors for ft4 that can be added to the that if vj, v2 r form a linearly independent set of vectors

set (v1. v,) to producea basis for ft1. in V, then the coordinate vectors (v1)5, (v.)s (Vr)s form

vi = (I, —4.2, 3), v, = (—3,8, —4.6) a linearly independent set in R”, and conversely
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23.

24.

26.

Let S = (v1, v,,.., vr) be a nonempty set of vectors in an
n-dimensional vector space V. Prove that if the vectors in
S span V, then the coordinate vectors (vi)s, (v2)s (v)s

span k’, and conversely.

Prove part (a) of Theorem 4.56.

State the two parts of Theorem 4.5.2 in contrapositive form.

Wa-

4.6 Change of Basis
A basis that is suitable lbr one problem may not he suitable for another, so it is a common
process in the siudy of vector spaces to change from one basis to another Ilecausea basis is
the vector space generalization of a coordinate system. changing bases is akin to cliaitgtnL’
coordinate axes in R2 and R3. In this section we will study problems related to chancing
bases.

Coordinate Maps IfS = (v1, v2 ,...,v,,} isa basis for a finite-dimensional vector space V, and if

(i’)5 = (c1, c2 )

is the coordinate vector of v relative to 5, then, as illustrated in Figure 4.4.6, the mapping

creates a connection (a one-to-one correspondence) between vectors in the general vector
space V and vectors in the Euclidean vector space R”. We call (1) the coordinate map
relative to S from V to k’. In this section we will find it convenient to express coordinate

(g) Every linearly independent set of vectors in k’ is contained in
some basis for k’

25. Prove: A subspace of a finite-dimensional vector space is
finite-dimensional.

(h) There is a basis for M22 consisting of invertible matrices.

(i) If A has size rz x it and I, A, A am distinct matri
ces, then (ia, A, A2 is a linearly dependent set.

27. In each part, let S be the standard basis for?,. Use the results
proved in Exercises 22 and 23 to find a basis for the subspace
of P1 spanned by the given vectors.

of?2,

(a) —l±x—2s2. 3+3x+6x2, 9

(j) There are at least two distinct three-dimensional subspaces

(b) I + x, x1, 2 ± 2-v + 3x2

(k) There are only three distinct two-dimensional subspaces of P2.

(c)t+x—3x2,2+2x—6x2,3+3x—9x

Working withTechnology

True-False Exercises

5nd
ors

(a)

TF. In parts (a)—( k) determine whether the statement is true or
false, and justify your answer.

TI. Devise three different procedures for using your technology
utility to determine the dimension of the subspace spanned by a
set of vectors in k’, and then use each of those procedures to
determine the dimension of the subspace of R5 spanned by the
vectors

(b)

The zero vector space has dimension zero.

(c)

There is a set of 17 linearly independent vectors in R’7.

(d)

= (2,2,—I, 0,1), v, = (—1, —1,2, —3,1).

here is a set of II vectors that span R’7.

= (1,1, —2,0, —1), v4 = (0,0,1,1,1)

(e)

Every linearly independent set of five vectors in R3 is a basis
for I?

(f)

T2. Find a basis for the row space of A by starting at the top and
successively removing each row that is a linear combination of its
predecessors.

Every set of five vectors that spans R5 is a basis for R5.

Every set of vectors that spans R contains a basis for R.

3.4 2.2 1.0 —1.8

2.1 3.6 4.0 —3.4

A = 8.9 8.0 6.0 7.0

7.6 9.4 9.0 —8.6

1.0 2.2 0.0 2.2

v — (v)y (1)
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We call these the dependency equations. The corresponding relationships in (5) are

= 2v1 —

V5 = V1 + V2 + V4 .4

The following is a summary of the steps that we followed in our last example to solve
the problem posed above.

Basis for the Space Spanned hy a Sd of Vectors

Step 1. Formthematrix A whose columns are the vectors in the setS = (vi, v2 vk).

Step 2. Reduce the matrix A to reduced row echelon form R.

Step 3. Denote the column vectors of R by w1, wk.
Step 4. Identify the columns of R that contain the leading l’s. The corresponding

column vectors of A form a basis for span(S).

This completes the first part of the problem.

StepS. Obtain a set of dependency equations for the column vectors w1,
of R by successively expressing each w1 that does not contain a leading I of
R as a linear combination of predecessors that do.

Step 6. In each dependency equation obtained in Step 5, replace the vector w1 by the
vectorv1 fori = 1,2 k.

LThis completes the second part of the problem.

Exercise Set 43

In Exercises 1—2, express the product Ax as a linear combina
tion of the column vectors of A.

r 2 3111
1. (a)

[l 4j [2

2. [1
In Exercises 3—4, determine whether b is in the column space

of A, and if so, express b as a linear combination of the column
vectors of A

(a) Find a vector form of the general solution of Ax = 0.

(b) Find a vector form of the general solution of Ax = b.

In Exercises 74, find the vector form of the general solution
of the linear system Ax = b, and then use that result to find the
vector form of the general solution of Ax = 0.

o —i —2

6 2 3

—I 4 5

4

(b) 3

0

[ JI

(b)A=[? ? I] b=[]

0122 7

5. Supposethatx1 = 3,x, = O,x3 = —l,x4 = Sisasolutionof
a nonhomogeneous linear system Ax = b and that the solu
tion set of the homogeneous system Ax = 0 is given by the

r 31 formulas
I 511 I

I 01
3 —8j1 I

L—J
x1=5r—2s, x,=s, x3=s+I, x4=r

(a) Find a vector form of the general solution of Ax = 0.

(b) Find a vector form of the general solution of Ax = b.

6. Suppose that x1 = —I,x, = 2, x3 = 4,x4 = —3 is a solution
of a nonhomogeneous linear system Ax = b and that the so
lution set of the homogeneous system Ax = 0 is given by the
formulas

x1=—3r+4s, x2=r—s, x3=r, x4=s

I 1 2

3.(a)A= I 0 1 b= 0
213 2

I—I 1 5
(b)A= 9 3 I b= I

I I I —l

I—I I 2

4(a)A= —l I —l b= 0

—l —l 1 0
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(b) x ± x2 + 213 = S In Exericses 16—17, find a subset of the given vectors that forms

± = —2 a basis for the space spanned by those vectors, and then express

, + + = 3 each vector that is not in the basis as a linear combination of the

basis vectors. ‘I

8. (a) x — 212 + 13 + 214 = I 16. y1 = (1,0,1,1), v, = (—3,3,7,1),
2x —41? +213 +4’4 = —2

= (—1,3,9, 3),v4 = (—5,3,5, —I)
—x,±ln— 11—213= I

3x — fix, + it3 ± fix3 = 3 17. v, = (I, 1,5,2). v, = (2,3,I,0),

(B) x1 + lv. — 3x, + 14 = 4
(4. —5. 9,4), = (0, 4, 2, —3),

—2.t,+ 11+213+ 14=—I

—x1 + 312 — 13 + 214 = 3 In Exercises 18—19, find a basis for the row space of A that

4x, — 712 — 514 5 consists entirely of row vectors of A. ‘I

18. The matrix in Exercise lO(a).

of A. 4 19. The matrix in Exercise 10(b).

20. Construct a matrix whose null space consists of all linear

combinations of (he vectors
1 2

—l 0

=
and v2

= —2

2 4

2 ol
21. In each part, let A

=
. For the given vector b,

find the general form of all vectors x in /? for which TA (x) = b

if such vectors exist.

(a) b = (0,0) (b) b = (1,3) (c) b = (—1,1)

22. In each pan, let A
= [! !].

For the ven vector b, find

the general form of all vectors x in l?2 for which TA(x) = b if

such vectors exist.

(a)b=(0,0,0,0) (b)b=(l,l,—I,—1)

(c) b = (2, 0, 0, 2)

23. (a) Let
010

A= 1 0 0

000

Show that relative to an .tyz-coordinate system in 3-space

the null space of A consists of all points on the z-axis and

that the column space consists of all points in the xv-plane

(see the accompanying figure).

(b) Find a 3 x 3 matrix whose null space is the 1-axis and

whose column space is the n-plane.

AZ

7.(a) x,—3x,=1
21, — 612 = 2

1 In Exercises 9—10, find bases for the null space and row space

—1 3

9.(a)A= 5 —4 —4

7 —6 2

1452

I0.(a)A=l 2 1 3 0

L—1 3 2 2

7

(b)A= 4

0

0 —l

0 —2

0 0

I 4 5 6 9

3 —7 I 4 —I
(b)A=

—1 —l —2 —l

2 3 5 7 8

‘- In Exercises 11—12. a matrix in row echelon form is given. By

inspection, find a basis for the row space and for the column space

of that matrix. 4

102

I1.(a) 0 0 1

000

I 2 4 5

0 1 —3 0

12.(a) 0 0 I —3

0 0 0 I

0 0 0 0

I —3 0 0

(b)
0 I 0 0

0 0 0 0

0 0 0 0

I 2 —I 5

b
3

0
0 1 —7

0 0 0 I

13. (a) Use the methods of Examples 6 and 7 to find bases for the

row space and column space of the matrix

I

—2 5 0 3
—2 5—7 0—6
—l 3 —2 I —3

—3 8 —9 I —9
*

(b) Use the method of Example 9 to find a basis for the row

space of A that consists entirely of row vectors of A.

In Exercises 14—15, find a basis for the subspace of R1 that is

spanned by the given vectors. 4

14. (1,1, —4, —3), (2,0,2, —2), (2, —1,3,2)

15. (1, 1.0.0), (0,0,1,1), (—2,0,2,2). (0—3.0.3)

Null space of,l

Column space
ofA 4 Figure Ex-23
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24. Find a 3 x 3 matrix whose null space is

(a) a point. (b) a line. (c) a plane.

25. (a) Find all 2 x 2 matrices whose null space is the line
iv

—

5y = 0.

(b) Describe the null spaces of the following matrices:

AEI l [l o] c=16 21 DE
0

L° 5i L° i L3 Ii

Working with Proofs

26. Prove Theorem 4.7.4.

27. Prove that the row vectors of an n x ii invertible matrix A
form a basis for R”.

28. Suppose that A and B are n x n matrices and A is invertible.
Invent and prove a theorem that describes how the row spaces
of AD and B are related.

True-False Exercises

TF. In parts (al—U) determine whether the statement is true or
false, and justify your answer.

(a) The span of v1 ,, is the column space of the matrix
whose column vectors are v1

(b) The column space of a matrix A is the set of solutions of
Ax = b.

(c) If R is the reduced row echelon form of A, then those column
vectors of I? that contain the leading l’s form a basis for the
column space of A.

(i) The system Ax = b is inconsistent if and only if 5 is not in the
column space of A.

(j) There is an invertible matrix A and a singular matrix B such
that the row spaces of A and B are the same.

Working withTechnology

TI. Find a basis for the column space of

2 6 0 8 4 12 $

3 9 —2 8 6 18 6

A= 3 9 —7 —2 6 —3 —I

2 6 5 18 4 33 II

I 3 —2 0 2 6 2

that consists of column vectors of A.

T2. Find a basis for the row space of the matrix A in Exercise TI
that consists of row vectors of A.

4.8 Rank, Nullity, and the Fundamental Matrix Spaces
In the last section we investigated relationships between a vstem of linear equations and
the row space. column space. and null space of its coeHicient matrix. In this section we will
be concerned n ith the dimensions of those spaces. The results we obtain n ill provide a
deeper insight into the relationship between a linear system and its coeflicient matrix.

Ip Examples 6 and 7 of Section 4.7 we found that the row and column spaces of the
matrix

—3 4 —2 5 4

—6 9 —1 8 2

—6 9 —I 9 7

3 —4 2 —5 —4

spaces have the same dimension is not accidental, but rather a consequence of the fol
lowing theorem.

row space of A
(d) The set of nonzero row vectors of a matrix A is a basis for the

(e) If A and B are n x it matrices that have the same row space,
then A and B have the same column space.

(f) If £ is ann: x In elementary matrix and A is an its x is matrix,
then the null space of LA is the same as the null space of A.

(g) If E is an in x in elementary matrix and A is an in x n matrix,
then the row space of LA is the same as the row space of A.

(h) If £ is an in x in elementary matrix and A is an in x n matrix.
then the column space of LA is the same as the column space
of A.

Row and Column Spaces
Have Equal Dimensions

7
A =

7

—l

both have three basis vectors and hence are both three-dimensional. The fact that these
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Thus, the system is consistent if and only if b1, b2, b3, b4, and b5 satisfy the conditions

2b1 — 3b2 + b3 =0

3b—4b2 +14 0

4b1 — 5b2

Solving this homogeneous linear system yields

+ b5 =0

b1=5r—4s, b=4r—3s, b3=2r—s, b4=r, b5=s

where r and s are arbitrary. 4

Remark The coefficient matrix for the given linear system in the last example has n = 2 columns,
and it has rank r = 2 because there are two nonzero rows in its reduced row echelon form. This
implies that when the system is consistent its general solution will contain n — r = 0 parameters;
that is, the solution will be unique. With a moment’s thought, you should be able to see that this
is so from (7).

In Exercises 1—2, find the rank and nullity of the matrix A by
reducing it to row echelon form.

I 2 —l 1

2 4 —2 2
I.(a)A=

6 —3 3

4 8 —4 4

In Exercises 3—6, the matrix)? is the reduced row echelon form
of the matrix A.

(a) By inspection of the matrix R, find the rank and nullity
of A.

(b) Confirm that the rank and nullity satisfy Formula (4).

(c) Find the number of leading variables and the number
of parameters in the general solution of Ax = 0 without
solving the system.

256 Chapter 4 General Vector Spaces

system by Gauss—Jordan elimination. We leave it for you to show that the augmented
matrix is row equivalent to

I 0 2b2— b1

0 1 b2— b1

0 0 b3—3b2+2b1

0 0 b4—4b2+3b1
0 0 b5—5b2+4b1

(7)

o —l 0

I 0

o o I 4
0 0 0

I —2 2 3 —‘1 2 —l —3 1 0 0

(b)A=—3 6—I l—7 3.A=—I 2—3;R=010

2—4 5 8—4j I 1 4 001

1 0 —2 1 0 2 —I —3 I 0 —3

2.(a)A=
0—1—3 I 3 4.A=—1 2—3;R=0 1—3

—2 —l I —l I I —6 0 0 0
0 I 3 0 —4

I 3 I 3 2 —l —3 I — —

0 I 1 0 5.A=—2 I 3;R=0 0 0

(b)A=—3 0 6—1 —4 2 6 0 0 0

3 4 —2 I

2 0—4—2
0 2 2 4 1

6.A=
I 0 —I 3;

=
2 3 I I 0

—2 I 3—2 0
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7. In each part, find the largest possible value for the rank or A

and the smallest possible value for the nullity of A.

(b) A is 3 x S

8. If A is an in x it matrix, what is the largest possible value for

its rank and the smallest possible value for its nullity?

IS. Are there values of r and s for which

0

o r—2 2

o s—I r+2

3

has rank I? Has rank 2? If so. flnd those values.

9. In each part, use the information in the table to:

(i) find the dimensions of the row space of A, column space

of A, null space of A, and null space of AT;

(H) determine whether or not the linear system Ax = b is

consistent;

(iii) find the number of parameters in the general solution of

each system in (ii) that is consistent.

(a) (b) (c) (d) (e) (f) (g)

SizeofA 3x3 3x3 3x3 5x9 5x9 4x4 6x2

Rank(A) 3 2 I 2 2 0 2

Rank[AIbI 3 3 I 2 3 0 2

1240

A= —3 I 5 2

—2 3 9 2

II. (a) Find an equation relating nullity(A) and nullity(AT) for

the matrix in Exercise 10.

(b) Find an equation relating nullity(A) and nullity(AT) for

a general in x it matrix.

12. Let T: R2 — R3 be the linear transformation defined by the

formula

T(x1,x2) = (x1 +3x2,x1 —xi,x1)

(a) Find the rank of the standard matrix for T.

(b) Find the nullity of the standard matrix forT.

13. Let T: R5 R3 he the linear transformation defined by the

formula

Tc1,x,x3,x4,x5) = (xi +x,,x, +x3 +x4,x4 +x5)

16. (a) Give an example of a 3 x 3 matrix whose column space is

a plane through the origin in 3-space.

(b) What kind of geometric object is the mill space of your

matrix?

(c) What kind of geometric object is the row space of your

matrix?

17. Suppose that A is a 3 x 3 matrix whose null space is a line

through the origin in 3-space. Can the row or column space

of A also be a line through the origin? Explain.

IS. (a) If A is a 3 ,< S matrix, then the rank of A is at most

Why?

(b) If A is a 3 x 5 matrix, then the nullity of A is at most

Why?

(c) If A is a 3 x 5 matrix, then the rank of AT is at most

Why?

(d) If A is a 3 x 5 matrix, then the nullity of Ar is at most

________

Why?

19. (a) If A is a 3 x 5 matrix, then the number of leading l’s in

the reduced row echelon form of A is at most

_________

Why?

(b) If A is a 3 x 5 matrix, then the number of parameters in

the general solution of Ax = Oisatmost

________.

Why?

(c) If A is a 5 x 3 matrix, then the number of leading 1s in

the reduced row echelon form of A is at most

Why?

(d) If A is a 5 x 3 matrix, then the number of parameters in

thegeneralsolutionofAx = Oisatmost Why?

20. Let A be a 7 x 6 matrix such that Ax = 0 has only the trivial

solution. Find the rank and nullity of A.

21. Let A be a 5 x 7 matrix with rank 4.

(a) What is the dimension of the solution space of Ax = 0?

(b) Is Ax = b consistent for all vectors bin R5? Explain.

(a) Find the rank of the standard matrix forT.

(B) Find the nullity of the standard matrix forT.

14. Discuss how the rank of A varies with t.

22. Let

(a) A is 4 x 4 (c) A is 5 x 3
I 0

0 0

10. Verify that rank(A) = rank(AT).

A = rat a1 a13

Lan a,2 021

Show that A has rank 2 if and only if one or more of the fol

lowing determinants is nonzero.

1 I t I 3 —l

(a) A = I t I (h) A = 3 6 —2 0I1 a11 (tI1 a1, (1j

r I I —I —3 t a2 a22j a11 0r a a23



I-—--.

258 Chapter 4 General Vector Spaces

23. Use the result in Exercise 2210 show that the set of points Working with Proofs
(x, y, z) in R3 for which the matrix 29. Prove: If k 0. then A and kA have the same rank.

[S
- 1 30. Prove: If a matrix A is not square, then tither the row vectorsI x yJ

or the column vectors of A are linearly dependent.has rank I is the curve with parametric equations x =
= Z = P. 31. Use Theorem 4.8.3 to prove Theorem 4.8.4.

24. Find matrices A and B for which rank(A) = rank(B), but 32. Prove Theorem 4.8.7(h).
rank(A) rank(B2).

33. Prove: If a vector v in B” is orthogonal to each vector in a25. In Example 6 of Section 3.4 we showed that the row space and
basis for a subspace W of B”, then v is orthogonal to everythe null space of the matrix
vector in W.

rI 3 —2 0 2 01
I 2 6 —5 —2 4 —3 I True-False ExercisesA=i I
10 0 5 10 0 151 TF. In parts (a)- (j) determine whether the statement is true or
L2 6 0 8 4 l8J false, and justify your answer.

are orthogonal complements in B6, as guaranteed by part (a) (a) Either the row vectors or the column vectors of a square matrix
of Theorem 4.8.7. Show that null space ofAT and the column are linearly independent.
space of A are orthogonal complements in B’, as guaranteed
by part (h) of Theorem 4,8.7. [Suggestion: Show that each (b) A matrix with linearly independent row vectors and linearly
column vector of A is orthogonal to each vector in a basis for independent column vectors is square.
the null space of AT.]

(c) The nullity of a nonzero In x a matrix is at most pa.
26. Confirm the results stated in Theorem 4.8.7 for the matrix.

—2 —5 8 0 —171 (d) Adding one additional column to a matrix increases its rank
byone.

I 3 —5 I SI
3 II —l9 7 1 I (e) The nullity of a square matrix with linearly dependent rows is
1 7 —13 5 _3J at least one.

27. In each pan, state whether the system is overdetermined or (f) If A is square and Ax = b is inconsistent for some vector b,
underdetermined. If overdetermined, find all values of the b’s then the nullity of A is zero.
for which it is inconsistent, and if underdetermined, find all
values of the b’s for which it is inconsistent and all values for (g) If a matrix A has more rows than columns, then the dimension
which it has infinitely many solutions. of the row’ space is greater than the dimension of the column

r I —ji space.1[xl I
(a) I — II i = I b2 (h) if rank(AT) = rank(A), then A is square.L o 1J HJ [b7J

(i) There is no 3 x 3 matrix whose row space and null space arer I —3 41 [l rb,1 both lines in 3-space.
(b)

V2 —6 8j [j = [b2J (j) If V is a subspace of B” and W is a subspace of V. then W’
isa subspace of V1.

I —3 rb,1
(c)

[—I I Ij [j = [b2j
Working withTechnology

TI. It can be proved that a nonzero matrix A has rank k if and
only if some k x k submatñx has a nonzero determinant and all28. What conditions must be satisfied by b, b2. b1. b4, and h5 for

the overdetermined linear system square submatrices of larger size have determinant zero. Use this
fact to find the rank of

— 3x, =

3 —I 3 2 51xt —1r2=b2 I I
Is —3 2 3 41

Xj+ x,=b3 A=I I
t —4.r-=b4 II —3 —5 0 —7]

xi+5x2=bs 1.7 —5 I 4 1

to be consistent? Check your result by computing the rank of A in a different way,
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Exercise Set 6.3
1. In each part, determine whether the set of vectors is orthog

onal and whether it is orthonormal with respect to the Eu

clidean inner product on ft2.

(a) (0, I), (2,0)

(b)(-+). ()
(c) (*)
(d) (0, 0), (0, 1)

2. In each part, determine whether the set of vectors is orthog

onal and whether it is orthonormal with respect to the Eu

clidean inner product on ft3.

(a) (.o, ), (, .4, —-j), (—,o,
‘Z)

b) (2 fl !) (1 fl) (! 2 2)

(c) (i,O,, .I2).(ooti)

(d)H.*.-). (-o)

3. In each part, determine whether the set of vectors is orthog

onal with respect to the standard inner product on P2 (see

Example 7 of Section 6.1).

(a) p1(x) =
— + x2, p2(x) = + —

p3(x) = + x + x2

(b) pj(x) = 1, p2(x) = -jx + x2, p3(x) =

4. In each part, determine whether the set of vectors is orthog

onal with respect to the standard inner product on Mn (see

Example 6 of Section 6.1).

P 01 [0 fl F ° Fl [
(a) Lu u] [! _;j’ [_; j’ [ z

b
ci i° ‘1 r° 01 P

UL0 oJ’ [o oj’ Li I]’ U —1

fr In Exercises 5—6, show that the column vectors of A form an

orthogonal basis for the column space of A with respect to the

Euclidean inner product, and then find an orthonormal basis for

that column space. ‘4

—f f
6.4= f

0 —

7. Verify that the vectors

form an orthonormal basis for ft3 with respect to the EU

clidean inner product, and then use Theorem 632(b) to ex

press the vector ii = (1, —2,2) as a linear combination of v1,

v2, and v;.

1’
8. Use Theorem 6.3.2(b) to express the vector u = (3, —7, 4) as

a linear combination of the vectors t, m, andy3 in Exercise 7.

9. Verify that the vectors

v=(2,—2,1), v,=(2,1,—2), v=U,2,2)

form an orthogonal basis fork3 with respect to the Euclidean

inner product, and then use Theorem 6.3.2(a) to express the

vectoru = (—1,0,2) as a linear combination of,1, V2, and v3.

tO. Verify that the vectors

V1 = (1, —1,2,—i), v, = (—2,2.3,2).

v=V,2,0,—l), v3=(1,0,0,l)

form an orthogonal basis for ft4 with respect to the Euclidean

inner product, and then use Theorem 6.J.2(a) to express the

vector u = (1,1,1,1) as a linear combination of V. V,, V3.

and V4.

0.’- In Exercises 11—14, find the coordinate vector (u)s for the vec

br ii and the basis S that were given in the slated exercise. 6

11. Exercise 7 12. Exercise 8

13. Exercise 9 14. Exercise 10

$‘ In Exercises 15—lW let R2 have the Euclidean inner product.

(a) Find the orthogonal projection of u onto the line spanned by

the vector v

120

5.A= 0 0 5

—l 2 0

(b) Find the component of u orthogonal to the line spanned by

the vector v, and confirm that this component is orthogonal

to the line. ‘I

1S.ti=(—1,6); v=(j) 16.u=(2,3); ‘=(i%J4)
17. u=(2,3); v=O,l) 1&u=(3,—I); v(3,4)

‘ In Exercises 19—22, let ft3 have the Euclidean inner product.

(a) Find the orthogonal projection of u onto the plane spanned

by the vectors V1 and 2•

(b) Find the component of u orthogonal to the plane spanned

by the vectorsv1 and v,, and confirm that this component is

orthogonal to the plane. ‘4

19. u = (4,2,1); yi = U. —Uj ‘2 = (3’ [4)
20. u (3,—l,2);

= (. ui’fo)’ ‘:= (4 . )
21. ii = (1,0,3); vi = (I, —2,1), v, = (2, 1,0)

22. u=(1,0,2); v =(3,1,2), v2=(—l, I, I)

In Exercises 23—24, the vectors V1 and V2 are orthogonal with

respect to the Euclidean inner product on ft4. Find the orthogo

nal projection of b = (I, 2,0, —2) on the subspace W spanned by

these vectors. 4

23.v:=(l.l,I,l),v’=(l,l.—l,—l)

24. v, = (0,1, —4, —I), V, = (3,5,1,1)

F
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In Exercises 25—26, the vectors v1, v,, and v3 are orthonor
ma1 with respect to the Euclidean inner product on R4. Find the
orthogonal projection orb = (1,2,0,—I) onto the suhspace W
spanned by these vectors.

25 _I I . (I 5 I
- VI

—

\U
,

—p 2 = t. g. ;. ;

_f I I 4
V3 -

26. vi: G. t4), v’
= G. , —k.

—,

13— (3, 3. 5,

In Exercises 27—2%, let R have the Euclidean inner product
and use the Gram- Schmidt process to transform the basis (cii, a2)
into an orthonormal basis. Draw both sets of basis vectors in the
xy-plane.

27.u1=(l,_3),u2=(2,2) 2&u1=(l.0),u=(3,—5)

In Exercises 29—30. let R3 have the Euclidean inner product and
use the Gram Schmidt process to transform the basis (ai, u, u3)
into an orthonormal basis.

29. u1 = (I, 1.1). a, = (—1,1,0). a3 = (1,2,1)

30. u1 = (1,0,0), a, = (3,7, —2), a3 = (0,4,1)

31. Let P4 have the Euclidean inner product. Use the Gram—
Schmidt process to transform the basis (ai, U2, Uj, 114j into an
orthonormal basis.

= (0,2,1,0), a3 = (1, —1,0,0),

32. Let R3 have the Euclidean inner product. Find an orthonor
mal basis for the subspace spanned by (0, 1,2), (—1,0, I),
(—1, 1,3).

33. Let band W be as in Exercise 23. Find vectors w1 in Wand
iv, in W’ such that b = w1 + IV’.

33. Let b and W be as in Exercise 25. Find vectors w1 in W and
W’ in W such that b = ÷ w,.

35. Let R3 have the Euclidean inner product. Tue subspace of
P3 spanned by the vectors ti1 = (I. I, 1) and u3 = (2,0,—I)
is a plane passing through the origin. Express w = (1,2.3)
in the form iv = W1 — tv, where w1 lies in the plane and w1 is
perpendicular to the plane.

36. Let k have the Euclidean inner product. Express the vector
w=(_l,2,6,0)intheformw=w: +14,, wherew1 isinthe
space W spanned by ‘i1 = (—1.0, 1,2) and u, = (0, 1,0, I),
and w, is orthogonal to W.

37. Let P3 have the inner product

(ci, ii) = uiu1 + 2u3t,3 + 303113

Use the Gram- Schmidt process to transform a1 = (I, I, I),
01 = (I, 1,0), u3 = (1,0,0) into an orthonormal basis.

38. Verify that the set of vectors ((1,0), (0, I)) is orthogonal with
respect to the innerproduct (ci, v) = 4u1 u + 1(21)2 on R2; then
convert it to an orthonormal set by normalizing the vectors.

39. Find vectors x and y in p that are orthonormal with respect
to the inner product (a, v) = 3u1u1 + 2u3v3 but are not or
thonormal with respect to the Euclidean inner product.

40. In Example 3 of Section 4.9 we found the orthogonal projec
tion of the vector x = (1.5) onto the line through the origin
making an angle ofr/6 radians with the positive s-axis. Solve
that same problem using Theorem 6.3.4.

41. This exercise illustrates that the orthogonal projection result
ing from Formula (12) in Theorem 6.3.4 does not depend on
which orthogonal basis vectors are used.

(a) Let R1 have the Euclidean inner product, and let W be the
subspace of R3 spanned by the orthogonal vectors

= (1.0,1) and y, = (0,1,0)

Show that the orthogonal vectors

= (1,1,1) and v = (I, —2,1)

span the same subspace W.

(b) Let ci = 1,7) and show that the same vector proj1yu
results regardless of which of the bases in part (a) is used
for its computation.

42. (Calculus required) Use Theorem 6.3.2(a) to express the fol
lowing polynomials as linear combinations of the first three
Legendre polynomials (see the Remark following Example 9).

(b)2—7x2 (c) 4+3x

43. (C’aleulus required) Let P3 have the inner product

(p, q)
= f p(x)q(x)dx

Apply the Gram-Schmidt process to transform the standard
basis S = (I, x, x3) into an orthonormal basis.

44. Find an orthogonal basis for the column space of the matrix

6 I —5

2 1 I
.4 =

—2 —2 5

6 8 —7

In Exercises 45—4%, we obtained the column vectors of Q by
applying the Gram-Schmidt process to the column vectors of A.
Find a QR-decomposition of the matrix .4.

u3=(I,2,0,—l), u4=(l,0,0,l) (a)I+x+4x2

I 2

aA=[ t. Q=[ -]
nfl

46.A=0 II, Q= 0

LI 4J i ±
1
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ri 0 21 —

True-False Exercises

47. A = 0 1 1 Q = 0 — TF. In parts (a) (1) determine whether the statement is true or

L’ 2 0J i I I false, and justify your answer.

(a) Every linearly independent set of vectors in an tnner product
± space is orthogonal.

F’ 2 fl e’ 2c’i dT

48. A = Q = __9 (b) Every orthogonal set of vectors in an inner product space is

La 3 U I linearly independent.
0

(c) Every nontrivial subspace of R3 has an orthonormal basis with
49. Find a QR-decompositton of the matrix respect to the Euclidean inner product.

101

A —

— I I (d) Every nonzero finite-dimensional inner product space has an

1 0 1 onhonormal basis.

—l I I
(e) pmj11 x is orthogonal to every vector of fl.

50. In the Remark following Example 8 we discussed two alter
native ways to perform the calculations in the Gram Schmidt (f) If A is an it x it matrix with a nonzero determinant, then A

process: normalizing each orthogonal basis vector as soon as has a QR-decomposition.

it is calculated and scaling the orthogonal basis vectors at each
step to eliminate fractions. Try these methods in ExampleS. Working withTechnology

TI. (a) Use the Gram-Schmidt process to find an orthonormal j
Working with Proofs basis relative to the Euclidean inner product for the column

51. Prove part (a) of Theorem 6.3.6. space of
I I I I

52. In Step 3 of the proof ofTheorem 6.3.5, it was stated that “the I o 0 I
linear independence of (ii1, u2 u) ensures that v3 0.’, A =

Prove this statement. 0 I 0 —

2 —l I
53. Prove that the diagonal entries of 1? in Formula (16) are

nonzero. (b) Use the method of Example 9 to find a QR-decomposition

of A.
54. Show that matrix Q in Example 10 has the property

QQT = I, and prove that every in x it matrix Q with or- T2. Let P4 have the evaluation inner product at the points

thononnal column vectors has the property =
—2. —1.0. 1,2. Find an orthogonal basis for P4 relative to this
inner product by applying the Gram—Schmidt process to the vec

55. (a) Prove that if U’ is a subspace of a finite-dimensional vec- tors
tor space V. then the mapping T: V — W defined by
T(v) = projjv isa linear transformation. P = I, Pi = . P: = r, pi = .X. p4 = .1

(b) What are the range and kernel of the transformation in
part (a)?

6.4 Best Approximation; Least Squares
There are maltv apolications iii hich sonic litlear system -lx = Ii of in cquation in n

unkno ns should be consistent on ph’ sical grounds hut fails to be so because nt

me;tsurement errors in the entries of A or h. In stich cases one looks for vectors that come

as close as possible to being solutions in the sense that they minimize lb — Ax t it It respect

to the Euclidean inner product on 8m In this section we will discuss methods br finding

such minimizing vect ots.

Least Squares Solutions of Suppose that Ax = b is an inconsistent linear system of in equations inn unknowns in

Linear Systems which we suspect the inconsistency to be caused by errors in the entries of A orb. Since

no exact solution is possible. we will look for a vector x that comes as “close as possible”

to being a solution in the sense that it minimizes lib — Axj with respect to the Euclidean
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Exercise Set 6.4

In Exercises 1—2. find the associated normal equation.
13 A = [i b = U

I —I 2 [ a i [—7

2

H 14. A= : h= H
3 I 2

X1 o In Exercises 15—16. use Theorem 6.3.2 to find the orthogonal
2. X2 projection of b on the column space of A, and check your result

I 2 4
‘

2 using Theorem 6.4.4.

I —1 4
In Exercises3—& find the least squares solution of the equation 15 A = 3 2 b =

Ax=b.
—2 4 3

rI —1 F 21

14=12 3 ;b=j—1( 5 I

[4 5 [ sJ l6.A= I 3 ;b= 2

4 —2 3

2 —2 2 17. Find the orthogonal projection of ii on the subspace of I?’
4. A = I I ; b = —l spanned by the vectorsvj and v2.

3 1 I u = (I, —6,1); v1 = (—1,2,1), v2 = (2,2,4)

1 0 1 6 18. Find the orthogonal projection of ci on the subspace of R4

5 A
2 I —2 0 spanned by the vectors v1, v2, and v.

=
,b=

u=(6,3,9,6); vi=(2,l,1,l), v,=(l,0,l,l),

I —l 3 v3=(—2,—l,O,—I)

2 0 —l 0
In Exercises 19—20, use the method of Example 3 to find the

standard matrix for the orthogonal projection on the stated sub

6. A
= I —2 2

; I,
= 6 space of R2. Compare your result to that in Table 3 of Section

2 —l 0 0 4.9.
0 I —l 6

19. the x-axis 20, the v-axis
In Exercises 7—Il), find the least squares error vector and least

C .
. In Exercises 21—22, use the method of Example 3 to find the

squares error of the stated equation. Verify that the least squares
. standard matnx for the orthogonal projection on the stated sub-

I ,. error vector is orthogonal to the column space of A. .

space of Ru Compare your result to that in Table 4 of Section
7. The equation in Exercise 3. 49

8. The equation in Exercise 4. 21. thexz-plane 22. the yc-plane

9. The equation in ExerciseS. In Exercises 23—24, a QR-factorization of A is given. Use it to

H,! . . . find the least squares solution of Ax = h.
10. The equation in Exercise 6.

r 3 ii r ±]rs —fl r31
In Exercises 11—11, find parametric equations for all least 23. A

= [—4 I]
= [— j [o ;J ; b

= [2]
squares solutions of Ax = b. and confirm that all of the solutions
have the same error vector. 3 —61 0 —lF5 —In

1l.A=[4 ;b=[2
24.4=4 0 [ j;b= 7

25. Let W be the plane with equation 5 — 3v + z = 0.

I 3 I (a) Find a basis for U’.

12. A = —2 —6 ; b = 0 (b) Find the standard matrix for the orthogonal projection

3 9 I onto U’.



6.5 Mathematical Modeling Using Least Squares 387

26. Let IV be the line with parametric equations True-False Exercises F

= 2r, y = —, 4r TF. In parts (a)—(h) determine whether the statement is true or
false, and justify your answer.

(a) Find a basis for W.
T(a) If A ‘san in x n matrix, then A A isa square matrix.

(b) Find the standard matrix for the orthogonal projection
on w. (b) If ATA is invertible, then A is invertible.

27. Find the orthogonal projection of u = (5, 6, 7, 2) on the (c) If A is invertible, then ATA is invertible.
lution space of the homogeneous linear system (d) If Ax = his a consistent linear system, then

x1 + x, ± = 0 A’Ax = ATb is also consistent.

112 + 13 + .14 = 0
(e) If Ax = his an inconsistent linear system, then

28. Show that if w = (a, b, c) is a nonzero vector, then the stan- ATAx = ATh is also inconsistent.
dard matrix for the orthogonal projection of R3 onto the line

(f) Every linear system has a least squares solution.span(w) is

a2 ab (g) Every linear system has a unique least squares solution.

P
= ,

, ab b2 bc (h) lfAisanm x nmatrixwithlinearlyindependentcolumnsanda2 + b-
ac be his in R’”, then Ax = b has a unique least squares solution.

29. Let A bean in Zn matrix with linearly independent row vec- Working withTechnology
tors. Find a standard matrix for the orthogonal projection of TI. (a) Use Theorem 6.4.4 to show that the following linear sys
R onto the row space of A. tem has a unique least squares solution, and use the method

of Example Ito find it.
Working with Proofs

x1+ x2+xj= I
30. Prove: If A has linearly independent column vectors, and if

Ax = his consistent, then the least squares solution ofAx Ii 4x + 212 + x3 = 10

and the exact solution of Ax = hare the same. 9x1 + 3x2 + .c3 = 9

l6x, ± 413 -1- = 1631. Prove: If A has linearly independent column vectors, and if b
is orthogonal to the culumn space of A, then the least squares (b) Check your result in part (a) using Formula (9).
solution of Ax = b is x = 0.

Tl Use your technology utility to perform the computations and
32. Prove the implication (h) =‘ (a) of Theorem 6.4.3. confirm the results obtained in Example 2.

6.5 Mathematical Modeling Using Least Squares
In this section we will USC results about orthogonal projections in inner product spaces to
obtain a lechnique for titting a line or other polynomial curve to a set of experimentally
determined points in the plane.

Fitting a Curve to Data A common problem in experimental work is to obtain a mathematical relationship
y = f(x) between two variables x and y by “fitting” a curve to points in the plane
corresponding to various experimentally determined values of x and y, say

(x,, y,), (x,, 52) (x, y)

On the basis of theoretical considerations or simply by observing the pattern of the
points, the experimenter decides on the general form of the curve y = f(x) to be fitted.
This curve is called a mathematical model of the data. Some examples are (Figure 6.5,1):


