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» EXAMPLE 8 Linear Independence Using the Wronskian

Use the Wronskian to show that f; = 1, f: = €%, and f3 = ¢** are linearly independent
vectors in C™(—c0, ),

Solution The Wronskian is

1 e* e
Wixy= [0 e 2e¥|=2¢"
0 & 4e™

This function is obviously not identically zero on (~oe, ), so f), {3, and f; form a linearly
independent set. <

OPTIONAL We will close this section by proving Theorem 4.3.1.

Proof of Theorem 4.3.1 We will prove this theorem in the case where the set S has two
or more vectors, and leave the case where § has only one vector as an exercise. Assume
first that § is linearly independent. We will show that if the equation

kivp+kvat-o kv, =0 (1)

can be satisfied with coefficients that are not all zero, then at least one of the vectors in
S must be expressible as a linear combination of the others, thereby contradicting the
assumption of linear independence. To be specific, suppose that k; # 0. Then we can

rewrite {11) as
v = ks V2 4 +( A v
1= kl 2 kl [

which expresses v as a linear combination of the other vectorsin S.
Conversely, we must show that if the only coefficients satisfying (11) are

k=0 k=0,..., k=0
then the vectors in S must be linearly independent. But if this were true of the coeffi-

cients and the vectors were not linearly independent, then at least one of them would be
expressible as a linear combination of the others, say

Vi=cvadeo Yy
which we can rewrite as
v+ (—cva+- -+ (= )v, =0

But this contradicts our assumption that (11) can only be satisfied by coeflicients that
are all zero. Thus, the vectors in S must be linearly independent.

Exercise Set 4.3

1. Explain why the following form linearly dependent sets of vec- 2. In each part, determine whether the vectors are linearly inde-
tors. (Solve this problem by inspection.) pendent or are linearly dependent in R*.

(@) (=3,0,4), (5,-1,2), (1,1,3)
(b) (-=2.0,1), (3,2,5), (6,-1,1), (7.0, -2)

(a) uy =(~1,2,4)and u: = (5, =10, =20} in R’
Buy=3- u=04>75), u=(-4,7in R*

. . 3. In each part, determine whether the vectors are lincarly inde-
©p=3-2c+xandp, =6-4x+2c"in P pendent or ate linearly dependent in R*.

34 3 4 (@) 3.8,7.-3). (1.5.3, 1), (2,~1,2,6), (4.2 6,4)
(d) A= [ . 0] and B = [_3 0] in My (b) (3,0, -3.6), (02,3, 1), (0, 2.-2,0), (-2, 1,2, 1)

1t

12.

13

14.




4. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in P;.

(@) 2 —x +4x%, 34 6x + 2%, 2+ 10x — 4x?
(b) 1+ 3x + 3x%, x +4x?, 5+ 6x + 322, T+ 2x —x?

5. In each part, determine whether the matrices are linearly in-
dependent or dependent.

t o] 1 2] [e 1.
(“)[l 2]' [2 I:l’ [2 1]"“"”
ot oo oo o0 0] .
Yo o ol o o of [0 1 of™"

6. Determine all values of k for which the following matrices are
linearly independent in M.

it 0 -1 0 2 0
B PR
7. Ineach part, determine whether the three vectors lie in a plane
in B2
(@ v =(2,-20,v=(614,v=(20-4)
v =(-672,v.=324,v=04-i2)

8. In each part, determine whether the three vectors lic on the
same line in R,

@ v =123 vn=1(2-4-6), vv=(-3,610

by vy =02 -4, n=0423,vw=(27-6

() v = (4,6,8), v =(2,3,4), v; =(=2,-3,-4)
9, (a) Show that the three vectors v; = (0, 3, 1, —1),

v, = (6,0,5,1), and v; = (4, =7, 1,3) form a linearly
dependent set in R*.

{b) Express each vector in part (a) as a linear col‘nbination of
the other two.
10. (a) Show that the vectors v, = (1,2,3,4)},v: = (0, 1.0, -1,
and v; = (1, 3, 3, 3) form a linearly dependent set in R*.
{(b) Express each vector in part {a) as a linear combination of
the other two.
11. For which real values of A do the following vectors form a
linearly dependent set in R*?
vl=(lt —%-_%)- V1=(—%.A,—%)‘ V;=(—l:.—%,l)
12. Under what conditions is a set with one vector linearly inde-
pendent?

13. In each part, let Ty: R? — R* be multiplication by A, and
letw, = (1,2) and uy = (=1, 1). Determine whether the sct
(T4 (u;), Ta{uz)) is linearly independent in R?.

1 =i I =1
{2y A= [0 2] (A= [_2 2]

14, In each part, let Ty: R* — R* be mulitiplication by A, and let
u = (10,0, =(2,—1, 1), and uy = (0, 1, 1). Determine
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whether the set [Ta(u;), Taluz), Talus)} is linearly indepen-
dentin R

1 1 2 1 | |
@A=]1 0 -3 byA=11 1 =3

2 2 0 2 2 ]

15. Are the vectors vy, v3, and v; in part (@) of the accompany-
ing figure linearly independent? What about those in part (b)?
Explain.

Az f
73 ¥y I
8
\ 2 " i
\‘l i B
X X
(@ (5)

A Figure Ex-15

16. By using appropriate identities, where requited, determine
which of the following sets of vectors in F(—w, =) are lin-
carly dependent.

{a) 6, Isin’x, 2cos’x (b) x, cosx

(©) 1, sinx, sin2x (d) cos 2x, sin’x, cos’x

(e) (3—x)?, x*—6x, 5 {f) 0, cos® mx, sin® 3mx

17. (Calculus required) The functions
fitt)=x and fr(x)=cosx

arelinearly independent in F{—w, =) because neither function
is a scalar multiple of the other. Confirm the linear indepen-
dence using the Wronskian.

18. (Calcalus required) The functions
Sfi{xy=sinx and fi(x) =cosx

are linearly independent in F(—, =) because neither function
is a scajar multiple of the other. Confirm the linear indepen-
dence using the Wronskian.

19, (Calculus required) Use the Wronskian to show that the fol-
lowing sets of vectors are linearly independent.

(ﬂ) l! Xy et (b) l, X, Iz

20. (Calculus required) Use the Wronskian to show that the func-
tions f,(x) = e*, fa(x) = xe*,and fi(x) = x’¢* arelincarly
independent vectots in C* (—, o).

21. {Calculus required) Use the Wronskian to show that the func-
tions fi{x) = sinx, fa(x) =cosx, and fi{x} = xcosx are
lineacly independent vectors in C*(—m, =),
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22. Show that for any veclors , v, and w in a vector spuce V, the
vectorsu ~ v, v — w, and w — u form a lincarly dependent set.

23. (a) InExample | we showed that the mutually orthogonal vec-
tors|, j, and k form a lincarly independent set of vectors in
R, Do you think that every set of three nonzero mutually
orthogonal vectors in R is linearly independent? Justify
your conclusion with a geometric argument.

(b) Justify your conclusion with an algebraic argument. [Hine:
Use dot products.]

Working with Proofs

24. Prove that if {v, v, va} is a linearly independent set of vectors,
then so are {vy, 2}, [vi, val. {va, va), v}, [v2), and {v3).

25. Prove that if § = [v), v, ..., v,) is a linearly independent set
of vectors, then so is every nonempty subset of S.

26. Prove thatif § = {v;, v, v;} is a linearly dependent set of vec-
tors in a vector space V, and v, is any vector in V that is not
in §, then {v|, va, v;, v4) is also linearly dependent.

., ¥, ] is a linearly dependent set of
., ¥p Are any vectors
.. ¥,) isalso

27. Prove thatif § = [v), v3,..
vectors in a vector space V, and if v,41, . .
in V that are notin S, then {v,, v, ...
linearly dependent.

s Ve Ve e

28, Prove that in P; every set with more than three vectors is lin-
early dependent.

29. Prove thatif {v), v1} is linearly independent and v, does not lie
in span{v|, vz}, then (v, v, v;} is linearly independent.

30. Use part (@) of Theorem 4.3.1 to prove part (h).
31. Prove part (b) of Theorem 4.3.2,
32. Prove part (c) of Theorem 4.3.2,

True-False Exercises

TF. In parts (a}-(h) determine whether the statement is true or
false, and justify your answer.

(a) A setcontaining a single vector is linearly independent.

(b} The set of vectors {v, kv} is lincarly dependent for every
scalar k.

(c) Every linearly dependent set contains the zero vector.

(d) If the set of vectors {v, v, vy} is linearly independent, then
{kvy, kv, kvs) is also linearly independent for every nonzero
scalar k.

(e) Il v;,..., v, are lincarly dependent nonzero vectors, then
at leasl one vector v; is a unique lincar combination of
LITETES N

{I') The set of 2 x 2 matrices that contain exactly two I's and two
0's is a linearly independent set in M.

{(g) The three polynomials (x — 1)(x ++ 2}, x(x -+ 2), and
x{x = 1) are linearly independent.

(h) The functions f) and f> are linearly dependent if there is a real
number x such that £, fi (x) + &, f2(x) = 0forsome scalars k,
and k.

Working with Technology

T1. Devise three different methods for using your technology utif-
ity to determine whether a set of vectors in R” is linearly indepen-
dent, and then use cach of those methods to determine whether
the following vectors are linearly independent.

V1= (4' -5,2, 6)' 1= (2, -2, 1, 3)r
vi=(6,-3,3,9), wa=04,-1,506)

T2. Show that § = [cos¢, sint, cos 27, sin 2t} is a linearly inde-
pendent set in C{—os, &) by evaluating the lefi side of the equation

cjcost +eysint + c3cos2t +c48in2r =0

at sufficiently many values of 1 to obtain a linear system whose
only solutionis¢c) =ca =c;=¢; =0.

4.4 Coordinates and Basis

We usually think of a line as being one-dimensional, a planc as iwo-dimensional, and the
space around us as three-dimensional. Tt is the primary goal of this section and the next to
mike this intuitive notion of dimension precise. In this section we will discuss coordinate
systems ie peneral vector spaces and lay the groundwork for a precise definition of

dimension in the next section.

Coordinate Systems in
Linear Algebra

In analytic geometry one uses rectangular coordinate systems to create a one-to-one cor-
respondence between points in 2-space and ordered pairs of real numbers and between

points in 3-space and ordered triples of real numbers (Figure 4.4.1). Although rectan-
guiar coordinate systems are commot, they are not essential. For example, Figure 4.4.2
shows coordinate systems in 2-space and 3-space in which the coordinate axes are not

mutually perpendicular.
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or, in terms of components,
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(Si _}’ 9) = cl(ll 2! l) + CZ(Zv 9! 0) + C3(3, 3? 4)

Equating corresponding components gives

i+ 2c:+3= 5

2¢; + 9¢; + Jey = —1

€ +4c;= 9

Solving this system we obtain¢; = L, ez = —l,c3 =2 (verify). Therefore,

(V)S — (l, _l- 2)

Soiution (b} Using the definition of (v)s, we obtain

v=(=1)v) +3va+2v;
=(=D{,2,D+3(2,9.00+23,3,49)=(11,3,7) -«

ey — T ——r e

Exercise Set 4.4

1. Use the method of Example 3 to show that the following set
of vectors forms a basis for R2,

2.1, 3,0]

2. Use the method of Example 3 1o show that the following set
of vectors forms a basis for R>.

[(3.1,-4),(2,5.6). (1,4, 8)}

4

3. Show that the following polynomials form a basis for Ps.

g, -1, -1

4. Show that the following polynomials form a basis for Ps.
] =x

l4x, 1-x 1-1x%

5. Show that the following matrices form a basis for M.

I | N

6. Show that the following matrices form a basis for M.

FHERE b

7. In each part, show that the set of vectors is not a basis for R'.
@ {2 =3, 1,4 1, D0 -7 D}
{b) [(l! 6, 4)! (21 4- _l)r (_'l‘ 21 5]'

8. Show that the following vectors do not form & basis for Ps.

[4+x+4x? 1-7x

1 = 3x + 2%,

10.

11.

12.

13,

14.

. Show that the following matrices do not form a basis for Mz,

BN B e R

Let V be the space spanned by v, = cos?x, va = sin’ x,
v; = Cos 2x.

{(a) Show that § = {v;, vz, v3} is not a basis for V.
(b) Find a basis for V.

Find the coordinate vector of w relative to the basis
S = {u, us} for R%.

@u=(2 -4, m=0G8; w={(1)

(byw = (1, 1), u;=(0,2); w=(a, b}

Find the coordinate vector of w relative 1o the basis
5 = {uy, w} for R?,

@ wm=(,-1) ;m=(L1); w=(1,0
Buy=({,-1),wm={1;w={01)

Find the coordinate vector of v relative to the basis
5 ={v), v, v;) for R*.

(a) ¥= (2' _1' 3); Y= (lv Ov 0)- 2= (2| ZIO).

Y= (3| 3! 3)
(b) v= (51 _12| 3); = (l' 2| 3)$ V2 = (_4! 5- 6))
¥y = (7. —8, 9)

Find the coordinate vector of p relative to the basis

S = {p. p2. 3} for P
@p=d=Ix+xip=Lp=x,p=x
byp=2—x+sip=l+x p=1+s p=x+x
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In Exercises 15-16, first show that the set § = (A}, A2, A3, A4l
is a basis for M»s, then express A as a linear combination of the
vectors in §, and then find the coordinate vector of A relative

to §.

Y L) R O R L |
s=fy 1 a=[ 4]

PP [ PR ) P . |
el ) ol

In Exercises 17-18, first show that the set § = {p,. p. ps} isa
basis for P, then express p as a linear combination of the vectors
in §, and then find the coordinate vector of p relative to S.

17.py = 1 +x+x% py=x+x%, py=x%
p=T=x+2x?

18.p,=1+2x+x% py=2+09x, py =3+ 3x+4x}
p=2-417x —3x?

19. In words, explain why the sets of vectors in parts (a) to (d) are
not bases for the indicated vector spaces.
(a) u = (Ivz)u u = (0- 3). u = (1, 5) for R?
® w=(~1,3,2), uy=(61,1)for &
©p= l4x +.1'2. P =x for P,

| 0 6 0 30
(d)A'_'[z 3]’ B=[-1 4]' C=[1 7]'
5 0
D=[4 2] fOl'Mzz

20. In any vector space a set that contains the zero vector must be
linearly dependent. Explain why this is so.

21. In each part, let T: R* — R? be multiplication by A, and let
{e1, 2, e3] be the standard basis for R®. Determine whether
the set {Ty(e,}, Tales), Tales)) is linearly independent in R%.

1 1 1 2
-3 byA=| 0 1 1
21

I
wa=| 0 1
-1 2 0 -1

22, In each part, let T, R — R* be multiplication by A, and Jet
u=(l, =2, =1). Find the coordinate vector of T, (u) relative
to the basis § = {(1,1,0), (0,1, ), (1, 1, 1)} for RY.

2 -1 0 01 0
(a) A=]1 1 t bha=|1 0 1
¢ -1 2 0D o1

23. The accompanying figure shows a rectangular xy-coordin-
ate system determined by the unit basis vectors i and j and
an x’v'-coordinate system determined by unit basis vectors w

and u;. Find the x'y'-coordinates of the points whose xy-
coordinates are given.

(@ V31 ® (L0 (© ©OH @ @b
, yand '
.‘.U
Adandu,
u
30° . X
i < Figure Ex-23

24. The accompanying figure shows a rectangular xy-coordinate
system and an x’y’-coordinate system with skewed axes. As-
suming that -unit scales are used on all the axes, find the x'y'-
coordinates of the points whose xy-coordinates are given.

@ (L ® 1,0 © O (@@ (@b
Ay 3
J . 4|5° . Ixnndx'
<4 Figure Ex-24

25. The first four Hermite polynontials [named for the French
mathematician Charles Hermite (1822-1901)] are

1, 2f, =2+4%, -12r+8¢

These polynomials have a wide variety of applications in

physics and engineering.

(a) Show that the first four Hermite polynomials form a basis
for Py.

(b} Let B be the basis in part (a). Find the coordinate vector
of the polynomial

p(t) = =1 — dr + 82 4 8
relative to B.

26. The first four Laguerre polynomials [named for the French
mathematician Edmond Laguerre (1834~-1886)] are

1, l—1, 2—dr+1% 6-18+97-1¢

(a) Show that the first four Laguerre polynomials form a basis
for Py.

(b) Let B be the basis in part (a). Find the coordinate vector
of the polynomial

P =100 +97 =1

relative to B.
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27. Consider the coordinate vectors

6 3

[wls = -1, [q]S= 0],
4 4

[B)s = 6

3

(a) Find wil S is the basis in Exercise 2.

1 (b) Find qif § is the basis in Exercise 3.

r () Find B if § is the basis in Exercise 5.

28, The basis that we gave for My; in Example 4 consisted of non-
invertible matrices. Do you think that there is a basis for My
consisting of invertible matrices? Justify your answer.

Working with Proofs
29, Prove thet R” is an infinite-dimensional vector space.
30. Let T3: R" — R" be multiplication by an invertible matrix

A, and let {4, us,...,u,} be a basis for R". Prove that
{Ta(m), Taluz), ..., Ta(u,)}isalsoa basis for R".

31. Prove that if V is a subspace of a vector space W and if V is
infinite-dimensional, then so is W.

True-False Exercises

TF. In parts (a)-(e) determine whether the statement is true or
false, and justify your answer.

(a) If V = span{v,, ..., s}, then {v, <.+ ¥} is a basis for V.

(b) Every linearly independent subset of a vector space Visa
basis for V.

4.5 Dimension
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(c) If [¥;,va, ..., ¥s) is & basis for a vector space V, then ev-
ery vector in V can be expressed as a linear combination of
Yi ¥ 000y Yo

(d) The coordinate vector of a vector x in R" relative to the stan-
dard basis for R" is X.

(¢) Every basis of P, contains at least one polynomial of degree 3
or less.

Working with Technology

T1. Let V be the subspace of Py spanned by the vectors
p=l+5x-32 =1, pp=T+4x - x* + 223,
p=5S+x+94+20t,  p=3-x + 7x? + 5x3

(a) Find a basis § for V.

{b) Find the coordinate vector of p= 19+ 18x — 1322 = 1023
relative to the basis S you obtained in part (a).

T2. Let V be the subspace of C*(—, =) spanned by the vectors
in the set

B = {1, cosx, cos? x, cos’ x, cos* x, cos’ x}

and accept without proof that B is @ basis for V. Confirm that
the following vectors are in V, and find their coordinate vectors
relative to B.

=1, f, =cos2x, f;=cos3x,

fy = coséx,

f, =cosx,

f; = cos 5x

We showed in the previous scction that the standard basis for R has n vectors and hence

Number of Vectors in a
Basis

that the standard basis for R? has three vectors. the stundard basis for R? has two vectors, and
the standard basis for R'(= R) has one vector, Since we think ol space as three-dimensional,
a plane as two-dimensional, and a line as one-dimensional, there scems to be a link between
the number of vectors in a basis and the dimension of a vector space. We will develop this
idea in this section.

Our first goal in this section is to establish the following fundamental theorem.

THEGREM 4.5.1 All bases for a finite-dimensional vector space have the same number
of vectors.

To prove this theorem we will need the following preliminary result, whose proof is
deferred to the end of the section.
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B xx e = o . —— ==

Exercise Set 4.5

In Exercises 1-6, find a basis for the solution space of the ho-
rmogeneous linear system, and find the dimension of that space.

in+xatx+x=0
Sxp—xy+xy—xa=0

1. I|+12— I3=0
—2)\‘|—Xz+2x;=0
—-X) o} 1‘320

3 2+ x4+ 3x=0 4, x;~d4x;+3x3— x3=0
Xy + 5x3=0 2x; — Bxy o 6x3 — 234 =0
X2 + .\'3=U

6. x+ y+ 2=0
Ix4+2y-2z=0
4x+3y—- z=0
6x+5y+ z=0

7. In each part, find a basis for the given subspace of R, and
state its dimnension.

(a) The plane 3x — 2y + 5z =0.

{b) Theplanex — y =0,

(¢) Thelinex =2r,y=—t,z=41.

(d) All vectors of the form (a, b, ¢), where b = a +c.

8 x1—=3x+ Xa=0
2.I| —6x2+2x_~,=0
3, =9 + 3 =0

8. In cach part, find a basis for the given subspace of R*, and
state ils dimension.

{a) All vectors of the form (a, b, ¢, 0).

(b) All vectors of the form (a, b, ¢, d), whered = a + b and
c=da-—b

(c) Allvectors of the form {a, b, c, d), wherea =b=c = d.
9, Find the dimension of each of the following vector spaces.

(a) The vector space of all diagonaln x n matrices.

(b) The vector space of all symmetricn x n matrices.

{c) The vector space of all upper triangular z x matrices.

10. Find the dimension of the subspace of P; consisting of all
pelynomials @ + a;x + aax? + a;x3 for whichay = 0.

11, (2) Show that the set W of all polynomials in P; such that
p(1) = 0is a subspace of P,.
(b) Make a conjecture about the dimension of W.

(c) Confirm your conjecture by finding a basis for W.

12. Find a standard basis vector for R? that can be added to the
set {v), v2} to produce a basis for R’
(a) = (_Iv 21 3)' Y11= (1! _2v _2)
byv = (1, -1,0), »=1(3,1,-2}

13. Find standard basis vectors for R* that can be added to the
set {¥v,, ¥z} to produce a basis for R*.

Y= (L _4v 2| —3)i

2= (_37 8' '_4‘ 6)

14. Let {v), vz, va} be a basis for a vector spacc V. Show that
{u;, u, u3) is also a basis, where &y = v, u; =) + v, and
u; =y + v+ V3

15. The vectors v = (1, =2, 3) and v; = (0, 5, =3) are linearly
independent. Enlarge (v}, ¥;) to a basis for RY.

16. The vectors v; = (1,0, 0, 0) and v; = (1, 1, 0, 0} are linearly
independent. Enlarge {v), v2] 102 basis for R*.

17. Find a basis for the subspace of R* that is spanned by the

vectors
¥ =(110-0)! V2=(ll0ll)l VJ:(Z‘O‘ l)o V= (Ovuv_l]
18. Find o basis for the subspace of R* that is spanned by the
vectors
vy=(,1L1} vw=(2,220) w= {0,0,0,3),
vy=(3334)

19. In each part, let Ty: R* — R be multiplication by A and find
the dimension of the subspace of R consisting of all vectors
x for which T ({x) = 0.

i1 0 1 2 0
(aA=|1 0 1 mA=]|1 2 0
(10 1 I 20
"1 0 0
©A=|-1 10
11

20. In each part, let T4 be multiplication by A and find the dimen-
sion of the subspace R* consisting of all vectors x for which
TA (X) =10.

1 0 2 1 00
(a)A=[ ‘] b A=|-1 1
0

11
00

- 0 0
! 4 1 01

Working with Proofs

21. (a) Prove that for every positive integer #, one can findn +1
linearly independent vectors in F(—e, w). [Hint: Look
for polynomials.]

{b) Usethe result in part (a) to prove that F(—cz, oc) is infinite-
dimensional.

(c) Prove that C(—¢, ), C" (=, =), and C*(—, x) are
infinite-dimensional.

22, Let § be a basis for an n-dimensional vector space V. Prove
thatif v, va, ..., v, form a linearly independent set of vectors
in V. then the coordinate vectors (vi)s, (¥2)s,-- .. (Ve)s form
a linearly independent set in R", and conversely.

g

i Vet
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23. Let § = (v, va,..., V) be a nonempty set of vectors in an
n-dimensional vector space V. Prove that if the vectors in
§ span V, then the coordinate vectors (v))g, (v2)s5, ..., (V)5
span R, und conversely.

24. Prove part (a) of Theorem 4.5.6.

25. Prove: A subspace of a finite-dimensional vector space is
finite-dimensional.

26. State the two parts of Theorem 4.5.2 in contrapositive form.

27. Ineach part, let § be the standard basis for P;. Use the results
proved in Exercises 22 and 23 to find a basis for the subspace
of P, spanned by the given vectors.

(@) -1 4+x—2x% 34+3xr+6x2, 9
(b) 1 +x, x2, 24+2x + 322
(©) 14 x—3x% 24 2x —6x2, 3+ 3x — Ox?

True-False Exercises

TF. In parts (a)~( k) determine whether the statement is true or
false, and justify your answer.

(a) The zero vector space has dimension zero.
(b) There is a set of 17 linearly independent vectors in R'7.
(c} There is a set of 11 vectors that span R"".

(d) Every linearly independent set of five vectors in R? is a basis
for R°,

(e) Every set of five vectors that spans R* is a basis for R®.

{f) Every set of vectors that spans R” contains a basis for R",

4.6 Change of Basis

4.6 Change of Basis 229

(g) Every linearly independent set of vectorsin R" is contained in
some basis for R".

(b) There is a basis for My, consisting of invertible matrices.

(i) IFAhassizen x nand /,, A, A2, ..., A" are distinct matri-
ces, then (1,, A, A%, ..., A"} is a linearly dependent set.

(j) There are at least two distinct three-dimensional subspaces
of Pz.

(k) There are only three distinct iwo-dimensional subspaces of Py.

Working withTechnology
T1. Devise three different procedures for using your technology
utility to determine the dimension of the subspace spanned by a
set of vectors in R", and then use each of those procedures to
determine the dimension of the subspace of R spanned by the
vectors
vi=(22,-101), wv=(-1,-1,2,-31),
vi={1,1,-2,0,-1), vv=(0,01,11)
T2. Find a basis for the row space of A by starting at the top and
successively removing each row that is a linear combination of its
predecessors.
34 22 1.0 -1.8
2.1 36 40 -34
A=189 80 60 70
76 94 90 -8.6
.o 22 00 22

A basis that is suitable for one problem may not be suitable for another. so it is i common
process inthe study of vector spaces 1o change [rom one basis 1o another. Because a basis is
the vector space generalization of a coordinate system, changing bases is akin to changing

coordinate axes in R and RY,

bases,

In this seclion we will study problems related to changing

Coordinate Maps If § = [v|, v3, ..., v,} is a basis for a finite-dimensional vector space V, and if

(W)s = (ci,62,....C9)

is the coordinate vector of v relative to S, then, as illustrated in Figure 4.4.6, the mapping

v = (v)s (N

creates a connection (a one-to-one correspondence) between vectors in the general vector
space V and vectors in the Euclidean vector space R". We call (1) the evordinate map
relative o S from V 1o R”. In this section we will find it convenient to express coordinate
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Exercise Set 4.7

In Exercises 1-2, express the product Ax as a linear combina-

tion of the column vectors of A.

2 371
L@ ] 4] [2]
-3 6 2 x
5 =4 0
@), 3 i
1 8 3

In Exercises 3—4, determine whether b is in the column space

We call these the dependency equations. The corresponding relationships in (5) are
¥y = 2\’| - VY2
YVs=V +V:+¥Vsg «

The following is a summary of the steps that we followed in our last example to solve
the problem posed above.

| Basis for the Space Spanned by a Set of Vectors
! Step 1. Formthe matrix A whose columns arethe vectorsin theset S = {v, va, ..., v}.
Step 2. Reduce the matrix A to reduced row echelon form R.

Step 3. Denote the column vectors of R by wy, wa, ..., wy.

Step 4. Identify the columns of R that contain the leading 1's. The corresponding
I column vectors of A form a basis for span(S).
| This completes the first part of the problem.

Step 5. Obtain a set of dependency equations for the column vectors wy, w2, ..., w;
of R by successively expressing each w; that does not contain a leading 1 of
! R as a linear combination of predecessors that do.

| Step 6. In each dependency equation obtained in Step 5, replace the vector w; by the
vectory, fori =1,2,... k.

; This completes the second part of the problem.

1 2 01 4
01 21 3
A= ; b=
b) 1 21 3 5
4 0 ~117~-2 o1 2 2 7
®]3 6 2 i 5. Suppose that x; = 3,x; = 0, x3 = =1, x; = 5is a solution of
[0 ~1 ¢ a nonhomogeneous linear system Ax = b and that the solu-
tion set of the homogeneous system Ax = 0 is given by the
® - ' 5] 3 formulas
| 6 3 -8 _s x)=5r=28, Xa=s8, Xi=85+1, xp=!

(a) Find a vector form of the general solution of Ax = 0.

(b) Find a vector form of the general solution of Ax = b.

of A, and if so, express b as a finear combination of the column

vectors of A

11 2
L@Aa=]1 0 1[|; b=
2 1 3
(1 -1 1
mA=]9 3 1|;

4 (a) A=

6. Suppose that x; = —1, x; =2, x; = 4, x; = —J is a solution
of a nonhomogeneous linear system Ax = b and that the so-
lution set of the homogeneous system Ax = 0 is given by the

0
I.
5 formulas
5] X1==3r+45, X3=r—5, X3=17, X4=35
1 (a) Find a vector form of the general solution of Ax = 0.

e (b) Find a vector form of the general solution of Ax = b.

In Exercises 7-8, find the vector form of the general solution
of the linear system Ax = b, and then use that result to find the
vector form of the general solution of Ax = 0.
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7.{@) x—-3n=1 (h) xi+x+2n= 5 » In Exericses 16-17, find a subset of the given vectors that forms
2y, = 6xy =2 x + np==2 a basis for the space spanned by those vectors, and then express
2y + 0+ 3= 3 each vector that is not in the basis as a linear combination of the
basis vectors.
8.(a) x -2+ x3-4+20=-1 16. v, = (1,0, 1, 1), vy = (=3,3,7, 1),
2x) = dxa + 23 + dxy = =2 Y= (=1.3.9,3), v = (=5,3, 5, —1)
: —n+ 22— xy—2xg= | '
;'I 3x; — 6xy + 3xy + 6xy = —3 17.vy=(1,-1,52), n=(=-2,3.1,0),
= v=(4,-594), w=1(0,42-73),
(b) x + 2x; 3+ xg = (_7. 18,2, —B)

=2+ n+2unt x
=%+ 3x; — x4+ 2x,
4x| — 711 — 5x4

i e o

4
-1

3 In Exercises 18-19, find a basis for the row space of A that
=5 consists entirely of row vectorsof A. 4
I8. The matrix in Exercise 10(a).

= In Exercises 9-10, find bases for the null space and row space

of A. = 19. The matrix in Exercise 10(b).
[1 -1 3 2 0 —i 20. Construct a matrix whose null space consists of all linear
9. (a)A=|5 -4 -4 bA=14 0 =2 combinations of the vectors
7 -6 2 0 0 0 1 2
1 4 5 2 Y= _3 and ¥ = -2
@mA=| 2 1 3 © 2 4
-1 3 2 2 L2 o
B 4 5 6 9 21. In each part, let A = [I sl For the given vector b,
(b) A = 32 1 4 find the general form of all vectors x in R for which Ta(x) = b
-1 0 -1 -2 -l if such vectors exist.
] 2 3 5 7 8 @b=(0.0  ®b=(,3)  (©b=(-11)
In Exercises 11-12, a matrix in row echelon form is given. By 2 0
inspection, find a basis for the row space and for the column space o1
of that matrix. 22, In each part, let A = Tt For the given vector b, find
- [1 =3 0 0]
| bo2 0 i 0o o 20
1. (a} [0 O 1 (b) the general form of all vectors x in R? for which Tx(x) = bif
0 0 0 0 0 0 0 such vectors exist.
| - R U (@) b= (0,0,0,0) Gy b=(1,1,-1,-1)
§ 2 = = b=(200
0 1 4 3 23. (a) Let
22@|o o0 1| =3 (b) 0 0 | -7 o1 0
U o 0 0 1 A=[1 00
6 0 0 0 - S 0 0 0
13. (a) Use the methods of Examples 6 and 7 to find bases for the Show that relative to an xyz-coordinate system in 3-space

the null space of A consists of all peints on the z-axis and

row space and column space of the matrix .
that the column space consists of all points in the xy-plane

.l, _§ 'SI 9 2 (see the accompanying figure).

-2 = 0 e

A= - 3 _3 | 23 (b} Find a 3 x 3 matrix whose mull space is the x-axis and
&3 8 w0 | D whose column space is the yz-plane.

H

{b) Use the method of Example 9 to find a basis for the row

space of A that consists entirely of row vectors of A.
Mull space of A

In Exercises 1415, find a basis for the subspace of R* that is
spanned by the given vectors.

4. (1,1, =4,=3), (2,0,2,-2), (2,-1,3.2)

¥y

Column space

of A

15.(1,1,0,0), {0,0,1.1), (=2,0.2,2), (2, =3,0,3) <« Figure Ex-23
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24, Find a 3 x 3 matrix whose null space is

(a) a point. (b) a line. (c) aplane,

25. (a) Find all 2 x 2 matrices whose null space is the line
Ix—-5y=0.
(b) Describe the null spaces of the following matrices:

ol el b ool

Working with Proofs
26. Prove Theorem 4.7 4.

27. Prove that the row vectors of an n x n invertible matrix A
form a basis for R*.

28. Suppose that A and B are n x n matrices and A is invertible.
Invent and prove a theorem that describes how the row spaces
of AB and B are related.

True-False Exercises
TF. In parts (a)-(j) determine whether the statement is true or
false, and justify your answer.

(a) The span of v|,...,v, is the column space of the matrix
whose column vectors are v, ..., ¥,.

{(b) The column space of a matrix A is the set of solutions of
Ax =b.

{c) If R is the reduced row echelon form of A, then those column
vectors of R that contain the leading I's form a basis for the
column space of 4,

{d) The set of nonzero row vectors of a matrix A is a basis for the
row space of A.

(e) If A and B are n x n matrices that have the same row space,
thent A and B have the same column space.

{f) ITEisanm x m elementary matrix and A is anm x » matrix,
then the null space of EA is the same as the null space of A.

(g) I Eisanm x mt elementary matrix and A isanm x n malrix,
then the row space of EA is the same as the row space of A.

(h) If Eisanm x m elementary matrix and A isanm x n matrix,
then the column space of EA is the same as the column space
of A.

(i) Thesystem Ax = b is inconsistent if and only if b is not in the
column space of A.

(j} There is an invertible matrix A and a singular matrix B such
that the row spaces of A and 8 are the same,

Working with Technology
T1. Find a basis for the column space of
2 6 0 8 4 12 4
3 9 -2 8 6
A=|3 9 =7 =2 6
2 6 5 18 4 3 1t
1 3 -2 0 2
that consists of column vectors of A.

T2. Find a basis for the row space of the matrix A in Exercise T1
that consists of row vectors of A.

4.8 Rank, Nullity, and the Fundamental Matrix Spaces

In the last scction we investigated relationships between a system of linear equations and
the row space, column space, and null space of its coefficient matrix. In this section we will
be concerned with the dimensions of those spaces. The results we oblain will provide i
deeper insight into the relationship between a linear system and its coeflicient matrix.

Row and Column Spaces

Have Equal Dimensions  matrix

Ip Examples 6 and 7 of Section 4.7 we found that the row and column spaces of the

1 =3 4 -2 5 4
2 -6 9 -1 8§ 2
2 -6 9 -1 9 7
-1 3 -4 2 -5 —4

both have three basis vectors and hence are both three-dimensional. The fact that these
spaces have the same dimension is not accidental, but rather a consequence of the fol-
lowing theorem.

e
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Exercise Set 4.8

In Exercises 1-2, find the rank and nullity of the matrix A by {a) By inspection of the matrix R, find the rank and nullity
reducing it to row echelon form.

system by Gauss-Jordan elimination. We leave it for you to show that the augmented
matrix is row equivalent to

1 0 26, — b
¢ 1 b — b
0 0 by -—3b+4 2D ¥)]
0 0 by~-4b; + 3b
0 0 bs—5b+4b
Thus, the system is consistent if and only if by, b, b3, bs, and b; satisfy the conditions
2b) — 3b; + by =0
3b; — 4by + by =0
4b, — 5b,y +b5=0

Solving this homogeneous linear system yields

by=5r—4s, bi=4r—-3s, by=2r—s5, by=r, bs=s
where r and s are arbitrary, <
Remark  The coefficient matrix for the given linear system in the last example has n = 2 columas,
and it has rank r = 2 because there are two nonzero rows in its reduced row echelon form. This
implies that when the system is consistent its peneral solution will contain # — r = 0 parameters;

that is, the solution will be unique. With a moment’s thought, you should be able to see that this
is so from (7).

of A.
(b) Confirm that the rank and nullity satisfy Formula (4).

: 2 -l ! (c) Find the number of leading variables and the number
1. (a) A= 2 4 -2 2 of parameters in the general solution of Ax = 0 without
3 6 -3 3 solving the system.
4 8 -4 4
1 -2 2 3 -1 [ 2 =1 =3] 1 0 0
(b)A=|-3 6 -1 1 =7 JA=|-=] 2 =3|: R= 1 0
2 -4 5 8 —4 | ] | 4] [0 0 1
| 0 =2 | 07 M2 1 -3 M1 0 -3
2. (a) A= WS 4. A=|-1 2 =3|; R=|0 1 -3
0o 1 3 0 -4] - -
13 13 =1 =3 -3 -3
0 i 1 0 5. A=]-=2 1 I; R=1|0 0 0
byA=|-3 0 6 -1 -4 2 6] o 0 0
: 'i ; f0 2 2 4 1 0 -1 0
- o ea] V0t 3L Joo1 10
In Exercises 3-6, the matrix R is the reduced row echelon form T 2 3 1 N | B ( 0 |
of the matrix A. | -2 ] 3 =2 ¢ 0 0 0

bt
—ram—

Rt L i, iRl D 1

o T

i
|
:
i




7. In each part, find the largest possible value for the rank of A
and the smallest possible value for the nullity of A.

(a) Ais4x 4 (b) Ais3 %35 {c) Ais5x3

8. If A isanm x n matrix, what is the largest possible vilue for
its rank and the smallest possible value for its nullity?

9, In each part, use the information in the table to:

(i) find the dimensions of the row space of A, column space
of A, null space of A, and null space of AT;

determine whether or not the linear system Ax = b is
consistent;

(ii}

4.8 Rank, Nullity, and the Fundamental Matrix Spaces

(iity find the number of parameters in the general solution of
each system in (ii) that is consistent.
@|®|e|@] @] 0] @
Sizeof A 3x3|3x3Ix3[5%x9]5x94x4|6x2
Rank(A) 3 2 1 2 2 0 2
Rank[A4 | b}| 3 3 | 2 3 0 2
10. Verify that rank(A) = rank(AT).
1 2 40
A=f=-3 1 5 2
-2 3 9 2

11. (a) Find an equation reluting nullity(A) and nullity(AT) for
the matrix in Exercise 10.

{b) Find an equation relating nullity(A) and nullity(A™) for
a general m x n matrix.

12. Let T: R2— R? be the linear transformation defined by the
formula

l T(xy, x2) = (x) + 3x2, &y = X2, %1)

{a) Find the rank of the standard matrix for T
i (b} Find the nullity of the standard matrix for T.

13. Let T: RS — R? be the linear transformation defined by the
formula

T (%4, X2, X3, X4, X5) = (X) + X2, X3 + X3 + X4y Xa + X3)

(a) Find the rank of the standard matrix for T.

{b) Find the nullity of the standard mateix for T.

14. Discuss how the rank of A varics with 7.

f
@A=f1 ¢ 1 by A=| 3

15. Are there values of r and s for which

1 0 0
0 r-2 2
0 s-1 r+2 i
U] 0 3

has rank 17 Has rank 27 If so, find those values.

i6. (a) Giveanexampleofa3 x 3 matrix whose column space is
a plane through the origin in 3-space.
(b) What kind of geometric object is the null space of your
matrix?
(c} What kind of geometric object is the row space of your
matrix? ;

17. Suppose that A is a 3 x 3 matrix whose nul space is a line
through the origin in 3-space. Can the row or column space
of A also be a line through the origin? Explain.

18. (2) If A is a 3 x 5 matrix, then the rank of A is at most
. Why?

{(b) If A is a 3 x 5 matrix, then the nullity of A is at most
. Why?

(c) If A is a 3 x 5 matrix, then the rank of AT is at most
. Why?

(d) If A is a 3 x 5 matrix, then the nullity of AT is at most
_— . Why?

19. (a) If Ais a 3 x 5 matrix, then the number of leading !'s in
the reduced row echelon form of A is at most
Why?
(b) If A is a 3 x 5 matrix, then the number of parameters in
the general solution of Ax = Qisat most . Why?

(c) If A is a 5 x 3 matrix, then the number of leading 1's in
the reduced row echelon form of A is at most
Why?

(d) If Ais a 5 x 3 matrix, then the number of parameters in
the general solution of Ax = @#isat most . Why?

20. Let A be 2 7 x 6 matrix such that Ax = 0 has only the trivial
solution. Find the rank and nullity of A,

21. Let A bea 5 x 7 makrix with rank 4,
(x) What is the dimension of the solution space of Ax = 07

(b) 1s Ax = b consistent for all vectors b in R*? Explain.

an a
A=
az dan

Show that A has rank 2 if and only if one or more of the fol-
lowing determinants is nonzero.

22, Let
dpa

(2553
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23. Use the result in Exercise 22 to show that the set of points
{x, y,2) in R’ for which the matrix

Xy z
1l x y
has rank 1 is the curve with parametric equations x =1,
y= ,2, =]
24. Find matrices A and B for which rank(A) = rank(B), but
rank(A®) # rank(B?).

25. In Example 6 of Section 3.4 we showed that the row space and
the null space of the matrix

1 3 =2 0 2 0
Azs-s-—z 4 -3
“lo o 5 10 o0 15

2 6 0 8 4 18

are orthogonal complements in R, as guaranteed by part (a)
of Theorem 4.8.7. Show that nuil space of AT and the column
space of A are orthogonal complements in R?, as guaranteed
by part (b) of Theorem 4.8.7. [Suggestion: Show that each
column vector of A is orthogonal to each vector in 2 basis for
the null space of AT ]

26. Confirm the results stated in Theorem 4.8.7 for the matrix.
-2 -5 8 0 -17
1 i =5 1 5
3 -19 7 1
1 7 -13 5§ =3

A=

27. In each part, state whether the system is overdetermined or
underdetermined. If overdetermined, find all values of the b's
for which it is inconsistent, and if underdetermined, find ail
values of the b's for which it is inconsistent and all values for
which it has infinitely many solutions.

1 -1 b,
@ -3 1 [x]= by
o 1|1 |
[

ols 2 )b
2]

( 1 -3 o
N PR | b
Z

|
| St |
=
—

28. What conditions must be satisfied by by, b;, by, by, and bs for
the overdetermined lincar system

X =3=58
X —212=bz
X+ xa=b
Xy — 4x1 = by
x|+ 5x = b

to be consistent?

Working with Proofs
29. Prove: If k # 0, then A and kA have the same rank.

30. Prove: Ifa matrix A is not square, then either the row vectors
or the column vectors of A are linearly dependent,

31. Use Theorem 4.8.3 to prove Theorem 4.8.4.
32. Prove Theorem 4.8.7(h).

33. Prove: If a vector v in R" is orthogonal to each vector in a
basis for a subspace W of R, then v is orthogonal to every
vector in W,

True-False Exercises

TF. In parts (a)~(j) determine whether the statement is true or
false, and justify your answer.

{a) Either the row vectors or the column vectors of a square matrix
are linearly independent.

(b) A matrix with linearly independent row vectors and linearly
independent column vectors is square,

{c) The nullity of a nonzero m % n matrix is at most m.

(d) Adding one additional column to a matrix increases its rank
by one.

(2) The nullity of a square matrix with linearly dependent rows is
al least one.

(f) If A is square and Ax = b is inconsistent for some vector b,
then the nullity of 4 is zero.

(g) Ifamatrix A has more rows than columns, then the dimension
of the row space is greater than the dimension of the cofumn
space,

(h) If rank(AT) = rank(A), then A is square.

(i) Thereisno 3 x 3 matrix whose row space and null space are
both lines in 3-space.

(1) Il V is a subspace of R" and W is a subspace of V, then W+
is a subspace of VL.

Working withTechnology

T1. It can be proved that a nonzero matrix A has rank & if and
only if some & x k submatrix has a nonzero determinant and all
square submatrices of larger size have determinant zero. Use this
fact to find the rank of

3 -1 32 5

5 -3 2 31 4

I =3 -5 0 =7

7 =5 | 4 1

Check your result by computing the rank of A in a different way.
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Exercise Set 6.3

1. In each part, determine whether the set of vectors is orthog-
onal and whether it is orthonormal with respect to the Eu-
clidean inner product on R2.

(a) (@, 1), 2,0)

® (-3 %) (5 %)
@ (~5-%) (%)
(@) 0.9), ©. 1)

2. In each part, determine whether the set of vectors is orthog-
onal and whether it is orthonormal with respect to the Eu-
clidean inner product on R?.

@ (0.8). (b 3e)

—_—
|
=
=
&1~
p —

@ (J % ~%) (5 -30)

3, In each part, determine whether the set of vectors is orthog-
onal with respect to the standard inner product on P (see
Example 7 of Section 6.1).

@ p() =3 =T+ ixd, pp) =3+ fx— 4%
pix) =3+ dx + §x?
® P =1, pa(x) = Jgx+ 57, pr(x) =+

4. In each part, determine whether the set of vectors is orthog-

onal with respect to the standard inner product on My (see

Example 6 of Section 6.1).
1 0 0 0 0
(a)[oo'l_'_z P
3 3 3
1 0 01 00 0 0
of o o [
» In Exercises 5-6, show that the column vectors of A form an
orthogonal basis for the column space of A with respect to the
Euclidean inner product, and then find an orthonormal basis for
that column space.

Wik il
[T TN}

ATV Cod

|
vl

1 |

1 2 0 5 3

— R B Y R |
54A=| 0 0 5 6.A=|t 1
-1 2 0 i 2

s 0 -3

7. Verify that the vectors

w=(-1%40), »=(}40, uw=00.01)

form an orthonormal basis for R* with respect to the Eu-
clidean inner product, and then use Theorem 6.3.2(b) to ex-
press the vectorn = (1, —2,2) asa linear combination of vy,
vy, and v;.

8. Use Theorem 6.3.2(b) to express the vectoru = (3, =7, 4) as
a linear combination of the vectors vy, vs, and vy in Exercise 7,
9. Verify that the vectors
Y = (2$ —2| 1)- 2= (2, 1,"2), Y3 =(1! 21 2)

form an orthogonal basis for R* with respect to the Euclidean
inner product, and then use Theorem 6.3.2{a) to express the
vectoru = (—1, 0, 2) as a linear combination of v, v, and vy,

10. Verify that the vectots
¥i s(lo —1)2- _])| V2=(—2, 2! 3. 2)-
VJ=(I,2,0"'—I), "4=(I,0,0,])

form an orthogona! basis for R* with respect to the Euclidean
inner product, and then use Theorem 6.3.2(a) to express the
vector u= (1,1, 1, 1) as a linear combination of v, v3, ¥3,
and v;.

» In Exercises §1-14, find the coordinate vector (u)s for the vec-
tor u and the basis S that were given in the stated exercise. =

11. Exercise 7 12. Exercise 8

13. Exercise 9 14. Exercise 10

» In Exercises 15-18, let R? have the Euclidean inner product.

(2) Find the orthogonal projection of u onte the line spanned by
the vector v.

(b) Find the component of u orthogonal to the line spanned by
the vector v, and confirm that this component is orthogonal
to the line, =

16 u=(2,3; v=(3 §)

15. u=(-1,6); v=(. %) £,
1 18 u=(3.-1); v=(3,4)

172u=(,3); v=(1,1}

B In Exercises 19-22, let R? have the Euclidean inner product.

{2) Find the orthogonal projection of u onto the plane spanned
by the vectors v; and ¥a.

(b) Find the component of u orthogonal to the plane spanned
by the vectors v, and vy, and confirm that this component is
orthogonal to the plane.

1oa=@21: v=034-) w=(41)

20.u=(3,-12; = (:}6-. 7'-.—725). V= (7‘5 il '3)
2% u=(]00'3); v|=(]O_2‘ l)v "2=(2, 1,0)
22-“=(|,0.2); v1=(3ll$2)9 V2=(—l,l,])

¥ In Exercises 23-24, the vectars v, and v, are orthogonal with
respect to the Euclidean inner product on R*'. Find the orthogo-
nal projection of b = (1, 2, 0, =2) on the subspace W spanned by
these vectors.

23, v, =(1,1,1,1), »=(1.1,=-1,-1)
24' Y= (0- l-_4- _l)! Y2 = (31 5; lu 1)




In Exercises 25-26, the vectors v, vz, and v, are orthonor-
mal with respect to the Euclidean inner product on R*. Find the
orthogonal projection of b= (1, 2,0, —1) onto the subspace W
spanned by these vectors.

5.0 =0 g5 ~F =) v=( D)
¥ = (V'ﬁ. 0- 7I|"av _7"-3)

%.n=(31531h v=(2.-1-1
{1 11
w=(3-33-1)
In Exercises 27-28, let R? have the Euclidean inner product
and use the Gram-Schmidt process to transform the basis {u, u3}

into an orthonormal basis. Draw both sets of basis vectors in the
xy-plane.

27 u = (l. —3). U = (2. 2) 28. w= (I.O). ;= (3. —S)

In Exercises 29-30, let R? have the Euclidean inner product and
use the Gram-Schmidt process to transform the basis [uy, uz, uy)
into an orthonormal basis.

220 =(L L1, uw=(=1,1,0, ;y=(1,2,1)
30 uy =(1,0,00, w: =(3,7,-2), ;3 = (0,4, 1)

31. Let R* have the Euclidean inner product. Use the Gram-
Schmidt process to transform the basis (w, u, u3, vy} into an
orthonormal basis.

uy=(021.0  w=(0-1.040
wy=(,20-1), uw=(,001)

32. Let R have the Euclidean inner product. Find an orthonor-
mal basis for the subspace spanned by (0, 1, 2), (~1,0,1),
(-1.1,3).

33. Let b and W be as in Exercise 23. Find vectors w; in W and
wy in W+ such that b = w; 4w,

34. Let band W be as in Exercise 25. Find vectors w; in W and
wa in W= such that b = w, 4w,

35. Let R’ have the Euclidean inner product. The subspace of
R* spanned by the vectorsu; = (I, 1, D and w: = (2,0, =1)
is 2 plane passing through the origin. Express w = (1, 2, 3)
in the form w = w; + w1, where w; lies in the plane and w. is
perpendicular to the plane.

36. Let R* have the Euclidean inner product. Express the vector
w = (=1, 2, 6, 0) in the form w = w, 4 w., where w, isin the
space W spanned by u) = (=1,0,1,2) and u: = (0, 1,0, 1),
and ws is orthogonal to V.

37, Let R? have the inner product

i, ¥) = 10 + 227 + 3y,

Use the Gram-Schmidt process to transform o = ([, 1, 1},
u; = (1, 1,0), 43 = (1, 0,0) into an orthonormal basis.
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38. Verify that the set of vectors {{(1, 0), (0, 1)} is orthogonal with
respect to the inner product {u, v) = 4u v, -+ uzvy on R?; then
convert it to an orthonormal set by normalizing the vectors.

39, Find vectors x and y in R? that are orthonormal with respect
to the inner product {u, v} = 3u,v, + 2u,v; but are not or-
thonormal with respect to the Euclidean inner product.

40. in Example 3 of Section 4.9 we found the orthogonal projec-
tion of the vector x = (1, 5) onto the line through the origin
making an angle of 7 /6 radians with the pasitive x-axis. Solve
that same problem using Theorem 6.3.4.

41, This exercise illustrates that the orthogonal projection result-
ing from Formula (12) in Theorem 6.3.4 does not depend on
which orthogonal basis vectors are used.

{2) Let R* have the Euclidean inner product, and let W be the
subspace of R spanned by the orthogonal vectors

vy=(1,0,1) and v; =(0,1,0)
Show that the orthogonal vectors
vy=(,L,1) and v;=(1,=2,1)
span the same subspace W.

(b} Letu = (=3, 1, 7) and show that the same vector projyu
results regardless of which of the bases in part (a) is used
for its computation.

42, (Calculus required) Use Theorem 6.3.2(«) to express the fol-
lowing polynomials as finear combinations of the first three

Legendre polynomials (see the Remark following Example 9).
(@) 1+ x + 4x* (b) 2—17x2 (c) 4+ 3x

43. (Calculus required) Let P; have the inner product

I
ina) = f plx)q{x)dx
1]

Apply the Gram-Schmidt process to transform the standard
basis § = {1, x, x*} into an orthonormal basis,

44, Find an orthogonal basis for the column space of the matrix

6 I =5
2 1 1
A=
-2 =2 5
6 8 =7

in Exercises 4548, we obtained the column vectors of 0 by
applying the Gram-Schmidt process to the column vectors of A.
Find a @R-decomposition of the matrix A.
2
sa=fy ) 0= 7]
iR
i

12 ;1 _%
6.4=00 1], 0=]|0 &
L1 4 i I

A A
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1 I I
1 0 27 A TA Ve
a.a=0 1 1|, @g=|0 & %
[1 2 0] ) 1 1
L3 A T
1 i _3
-l 2 1- ﬁ /19 m
= I 3 3
#s.a=(11 1], 0=|% & &
|0 3 1] v 1
| 0 T
49. Find a @R-decomposition of the matrix
1 0 1
-1 1 1
A= 1 0 1
-1 1 1

50. In the Remark following Example 8 we discussed two alter-
native ways to perform the calculations in the Gram-Schmidt
process: normalizing each orthogonal basis vector as soon as
it is calculated and scaling the orthogonal basis vectors at each
step to eliminate fractions. Try these methods in Example 8.

Working with Proofs
51. Prove part (a) of Theorem 6.3.6.

52. In Step 3 of the proof of Theorem 6.3.5, it was stated that “the
linear independence of {u,,uy, ..., u,} ensures that v; # 0.”
Prove this statement.

53, Prove that the diagonal entries of R in Formula (16) are
nonzero.

54, Show that matrix ¢ in Example 10 has the propetty
007 = I;, and prove that every m x n matrix Q with or-
thonormal columa vectors has the property 0@7 = 1,,.

55. (a) Prove that if W is a subspace of a finite-dimensional vec-
tor space V, then the mapping 7:V — W defined by
T (v) = projyv is a linear transformation.

(b) What are the range and kernel of the transformation in
part (a)?

True-False Exercises

TF. In parts (a)-(") determine whether the statement is true or
false, and justify your answer.

(a) Every linearly independent set of vectors in an inner produci
space is orthogonal.

(b) Every orthogonal set of vectors in an inner product space is
linearly independent.

(¢) Everynontrivial subspace of R? has an orthonormal basis with
respect to the Euclidean inner product.

{d) Every nonzero finite-dimensional inner product space has an
orthonormal basis.

{e) projy x is orthogonal to every vector of W.

(f) If A is an n x n matrix with 2 nonzero determinant, then A
has a QR-decomposition.

Working withTechnology

T1. (a) Use the Gram-Schmidt process to find an orthonormal
basis relative to the Euclidean inner product for the column
space of

0
|
=1 [

{(b) Use the method of Example 9 10 find a QR-decomposition
of A.

oS -

1
[
2
[

[ S =

T2. Let Py have the evaluation inner product at the points
=2,-1,0,1,2. Find an orthogonai basis for Py relative to this
inner product by applying the Gram-Schmidi process to the vec-
tors

=11 p=x pz=,t:_ p3=x3, p_,:,r“

6.4 Best Approximation; Least Squares

There are many applications in which some linear system Ax = b ol mr equations in n
unknowns should be consistent on physical grounds but fails 1o be so because of
measurement errors in the entries of A or b. In such cases one looks lor vectors that come
as close as possible 1o being solutions in the sense that they minimize [[b — Ax|| with respect
to the Euclidean inner product on 87, In this section we will discuss methods ior finding

such minimizing vectors.

Least Squares Solutions of
Linear Systems

Suppose that Ax = b is an inconsistent linear system of m equations in n unknowns in
which we suspect the inconsistency to be caused by errors in the entries of A or b. Since
no exact solution is possible, we will look for a vector x that comes as “close as possible”
to being a solution in the sense that it minimizes ||b — Ax|| with respect to the Euclidean
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Exercise Set 6.4

In Exercises 1-2, find the associated normal equation.

V=1 2
1.]2 3 [x']= —1
4 557 5
[ 2 -1 0 . -1
3 1 2 0
2. =
-1 4 5 f I
L 1 2

In Exercises 3-4, find the least squares solution of the equation
Ax = b,

(1 -1 2
3A=|2 Iib=| -1
4 5 sj
S -y
4. A=|1 1|;b=|-1
301 | 1
[1 0 -1 6]
2 1 =2 0
5 A= 1 1 0 b= 9
v 1 -1 3]
2 0 =1 [0]
1 -2 2 6
. A= b=
64=1, 1 o 0
[0 1 -1 6 |

-1 3 2 7
13.A=| 2 1 3|ib=| 0
| 011 o
EEEE 2
M A=|1 -4 3|;b=]|-2
(1 10 -7 1

In Exercises 15-16, use Theorem 6.4.2 to find the orthogonal
projection of b on the column space of A, and check your result
using Theorem 6.4.4.

1 -t 4

15. A= 3 2(;b=|1
_—2 4 3_
5 1 -4

16. A=|1 ;b= 2
(4 -2 3]

17. Find the orthogonal projection of u on the subspace of R’
spanned by the vectors v) and va.

“:(I,HG, l); ¥ =(_1v2| 1)- "1=(2'2'4)

18. Find the orthogonal projection of u on the subspace of R*
spanned by the vectors vy, va, and v;.
n=1(639,6); v=(2,1,1,1), »=(1,0.1,1),
vy=(-2,-10-1)

In Exercises 19-20, use the method of Example 3 to find the
standard matrix for the orthogonal projection on the stated sub-
space of R2. Compare your result to that in Table 3 of Section
4.9.

In Exercises 7-10, find the least squares error vector and least
squares error of the stated equation. Verify that the least squares
ertor veclor is orthogonal to the column space of A.

‘7. The equation in Exercise 3.
8. The equation in Exercise 4.
9. The equation in Exercise 5.
18. The equation in Exercise 6.

In Exercises 11-14, find parametric equations for all least
squares solutions of Ax = b, and confirm that all of the solutions
have the same error vector.

3
I. A= 4 21, b= |2
2 1

1 3
122.A=|-2 -6|;:b=|0
3 9 1

19, the x-axis

20, the y-axis

In Exercises 21-22, use the method of Example 3 to find the
standard matrix for the orthogonal projection on the stated sub-
space of R*. Compare your result to that in Table 4 of Section

4.9,
21. the xz-plane 22, the yz-plane

In Exercises 23-24, a QR-factorization of A is given. Useit to
find the least squares solution of Ax = h.

[ 3
Boa=|’ ']_[s s
¢ - - 4 3

-4 ! -3 3

s 0 5 =10 -l
4. A=|4 -B[=|% 0 [ :|;b= 7
1

25. Let W be the plane with equation 5x — 3y + 2 = 0.
(a) Find a basis for W.

(b) Find the standard matrix for the orthogonal projection
onto W.

dai - ik

giaid

et

T,

] o
e

e,

i
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26. Let W be the line with parametric equations True-False Exercises

x=A y=-—t, z=4 TF. In parts (a)-(h) determine whether the statement is true or

S false, and justify your answer,
e (a) If A isanm x n matrix, then A4 is a square matrix,

i (b} Find the standard matrix for the orthogonal projection
T on W. (b} If A™4 is invertible, then A is invertible.

27. Find the orthogonal projection of u = (5,6, 7.2) on the so- (¢} If A is invertible, then A'A is invertible.

lution space of the homogeneous linear system (d) If Ax = bis a consistent lincar system, then

X+ X+ =0 ATAx = ATb is also consistent.

253 + 33 + Xm0 (e) If Ax = b is an inconsistent linear system, then

28. Show that if w = (a, b, c) is a nonzero vector, :hen the stan- ATAx = ATb is also inconsistent.
::;:l::x}:ti:x for the orthogonal projection of R* onto the line (f) Every linear system has a least squares solution.
| g a® ab ac (g) Every linear system has a unique least squares solution.
; P= 2—!5—2 ab B bc {h) If Aisanm x n matrix with linearly independent columns and
1' al+b'+c ac be o bis in R, then Ax = b has a unique least squares solution.
1 29. Let A be an m x n matrix with linearly independent row vec-  Working with Technology
:'ﬁ :;: zrﬁln?hi ::::‘::;:::}t:f for the orthogonal projection of T1. (a) Use Theorem 6.4.4 to show that the following linear sys-

tem has a unique least squares solution, and use the method

of Example 1 to find it.
Working with Proofs

. . . x4+ xntxn=1
30. Prove: If A has linearly independent column vectors, and if

Ax = bisconsistent, then the least squares solution of Ax = b n+2n+n=10
and the exact solution of Ax = b are the same. 9% 4+ 3x; + x5 9

1611 + 4).‘2 +):3 =16

31. Prove: If A has linearly independent column vectors, and if b
is orthogonal to the column space of A, then the least squares  (b) Check your result in part (a) using Formula (9). :

solutionof Ax =bisx = 0. - .
T2. Use your technology utility to perform the computations and

32, Prove the implication (§) = (a) of Theorem 6.4.3. confirm the results obtained in Example 2.

B
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[ 6.6 Mathematical Modeling Using Least Squares

In this section we will use results about orthogonal projections in inner product spaces to
obtain a technique for fitting a line or other polynomial curve to a set of experimentaily
determined points in the plane,

Fitting a Curve to Data A common problem in experimental work is to obtain a mathematical relationship
¥ = f{x) between two variables x and y by “fitting” a curve to points in the plane j
corresponding to various experimentally determined values of x and y, say ]

(x1, 1), (2, y2)y ooy (R0 V)

On the basis of theoretical considerations or simply by observing the pattern of the
points, the experimenter decides on the general form of the curve y = f(x) to be fitted.
This curve is called a mathematical model of the data. Some examples are (Figure 6.5.1):




