The Proof Page

by D. A. Kouba

Section 1.3- Universal Quantifier (For all x ...); Existential Quantifier (There exists x ...); Unique Existential Quantifier (There exists a unique x ...)



$ \underline { \rm DEFINITION } $ : A sentence containing one or more variables is called an $ \underline { \rm open \ sentence } $ .

$ \underline { \rm NOTE } $ : An open sentence is NOT a proposition because it is neither true nor false until all of its variables are replaced with values.

$ \underline { \rm EXAMPLE } $ : The expression $ x^2+x=6 $ is an open sentence. Define $ P(x) $ to be the open sentence $ x^2+x=6 $. Then $ P(-3) $ means $ (-3)^2+(-3)=6 $, which is a true proposition, and $ P(0.7) $ means $ (0.7)^2+(0.7)=6 $, which is a false proposition.

$ \underline { \rm EXAMPLE } $ : Define $ P(x,y) $ to be the open sentence $ x^2+y^2=25 $. Then $ P(3, -4) $ means $ (3)^2+(-4)^2=25 $, which is a true proposition, and $ P(2,0) $ means $ (2)^2+(0)^2=25 $, which is a false proposition.

$ \underline { \rm DEFINITION } $ : The set of objects $ x $ (or $ (x, y) $) available for consideration (substitution) in an open sentence $ P(x) $ (or $ P(x,y) $) is called a $ \underline { \rm universe } $ . The set of elements $ x $ (or $ (x, y) $) which makes $ P(x) $ (or $ P(x,y) $) true is called the $ \underline { \rm truth \ set } $ .

$ \underline { \rm EXAMPLE } $ : Let the universe be the set of all real numbers for the open sentence $ P(x) : x^2+x=6 $. Then the truth set is $ \{ 2, -3 \} $. Let the universe be the set of all positive integers for the open sentence $ P(x) : x^2+x=6 $. Then the truth set is $ \{ 2 \} $.

$ \underline { \rm DEFINITION } $ : Let $ P(x) $ be an open sentence with variable $ x $. The previous definitions of quantifiers are somewhat abstract and technical, and may appear to be fairly msysterious. However, careful examination of the following examples will likely make them very understandable.

$ \underline { \rm EXAMPLE } $ : $ \underline { \rm NOTE } $ : In general, QUANTIFIERS DO NOT COMMUTE. In Example 7 just completed, $ ( \forall y)( \exists ! x ) P(x,y) $ and $ ( \exists ! x )( \forall y) P(x,y) $ have distinct meanings. The statement $ ( \forall y)( \exists ! x ) P(x,y) $ is already explained. The statement $ ( \exists ! x )( \forall y) P(x,y) $ means that there is a single, unique real number $ x $ so that $ x^3+4=y $ for all real numbers $ y $. In fact, this second statement is false.

$ \underline { \rm EXAMPLE } $ : Let the universe be the set of all animals. Consider the open sentences $ Q(x) : x $ is a dog, $ R(x) : x $ chases cars, and $ P(x) : x $ eats vegetables. Rewrite each of the following common sentences in symbolic quantifier form. Find solutions HERE . $ \underline { \rm EXAMPLE } $ : Write a logical, meaningful denial of each sentence in ordinary English. Find solutions HERE . The following theorem formally addresses the negation of quantified sentences.

$ \underline { \rm THEOREM \ 1.3 } $ : Let $ A(x) $ be an open sentence with variable $ x $. $ \underline { \rm PROOF } $ : a.) (NOTATION : Assume that `` $ \Leftrightarrow $ " has the same meaning as `` if and only if " has the same meaning as `` iff .") We will show that $ \sim ( \forall x) A(x) $ and $ ( \exists x) ( \sim A(x) ) $ have the same truth values. First,

$ \sim ( \forall x) A(x) $ is TRUE

iff

$ ( \forall x) A(x) $ is FALSE

iff

The truth set for $ A(x) $ is NOT the entire universe

iff

There is at least one element in the truth set for which $ \sim A(x) $

iff

$ ( \exists x) ( \sim A(x) ) $ is TRUE .

Second,

$ \sim ( \forall x) A(x) $ is FALSE

iff

$ ( \forall x) A(x) $ is TRUE

iff

The truth set for $ A(x) $ is the entire universe

iff

The truth set for $ \sim A(x) $ is empty

iff

$ ( \exists x) ( \sim A(x) ) $ is FALSE.

Thus, $ \sim ( \forall x) A(x) $ and $ ( \exists x) ( \sim A(x) ) $ have the same truth values.

b.) The proof that $ \sim ( \exists x) A(x) $ is equivalent to $ (\forall x) (\sim A(x)) $ is analogous to the proof of part a.).

$ \underline { \rm EXAMPLE } $ : Let the universe be the set of all animals. Consider the open sentences $ Q(x) : x $ is a dog , $ R(x) : x $ chases cars, and $ P(x) : x $ eats vegetables. Rewrite each of the following common sentences in symbolic quantifier form. Use Theorems 1.2 and 1.3 to write formal denials of these statements. Finish by writing a meaningful denial in ordinary English. Find solutions HERE . $ \underline { \rm EXAMPLE } $ : In calculus we learn that if function $ y=f(x) $ is continuous at $ x=a $, then the following formal $ \epsilon,\delta $ definition is true. For every real number $ \epsilon > 0 $ there exists another real number $ \delta > 0 $ so that if $ \vert x-a\vert < \delta $, then $ \vert f(x) - f(a) \vert < \epsilon $. Without loss of generality and for the sake of relative simplicity, assume that $ a>0 $ and let the universe be the set of all positive real numbers. Consider the open sentences $ Q( \delta, x ) : \vert x-a\vert < \delta $ and $ R( \epsilon, x) : \vert f(x) - f(a) \vert < \epsilon $ . We can now rewrite the $ \epsilon,\delta $ definition in symbolic quantifier form as

$ ( \forall \epsilon )( \exists \delta ) [ ( \forall x ) \{ Q( \delta, x) \Rightarrow R( \epsilon, x) \} ] $ .

Next we will use Theorems 1.2 and 1.3 to write a formal denial of this statement, distributing the negation as far as possible, and finish by writing a meaningful denial in ordinary English. Then

$ \sim ( \forall \epsilon )( \exists \delta ) [ ( \forall x ) \{ Q( \delta, x) \Rightarrow R( \epsilon, x) \} ] $

iff

$ ( \exists \epsilon ) \sim ( \exists \delta ) [ ( \forall x ) \{ Q( \delta, x) \Rightarrow R( \epsilon, x) \} ] $ . . . . . . (By Theorem 1.3 a.)

iff

$ ( \exists \epsilon ) ( \forall \delta ) \sim [ ( \forall x ) \{ Q( \delta, x) \Rightarrow R( \epsilon, x) \} ] $ . . . . . . (By Theorem 1.3 b.)

iff

$ ( \exists \epsilon ) ( \forall \delta ) [ \sim ( \forall x ) \{ Q( \delta, x) \Rightarrow R( \epsilon, x) \} ] $

iff

$ ( \exists \epsilon ) ( \forall \delta ) [ ( \exists x ) \sim \{ Q( \delta, x) \Rightarrow R( \epsilon, x) \} ] $

iff

$ ( \exists \epsilon ) ( \forall \delta ) [ ( \exists x ) \sim \{ R( \epsilon, x) \vee \sim Q( \delta, x) \} ] $ . . . . . . (By Theorem 1.2 d.)

iff

$ ( \exists \epsilon ) ( \forall \delta ) [ ( \exists x ) \{ \sim R( \epsilon, x) \wedge Q( \delta, x) \} ] $ . . . . . . (By Theorem 1.2 c.)

iff

There exists an $ \epsilon > 0 $ so that, for all $ \delta > 0 $, there exists a real number $ x $ satisfying $ \vert x-a\vert < \delta $ but $ \vert f(x) - f(a) \vert \not< \epsilon $ .

$ \underline { \rm EXAMPLE } $ : Write each of the following statements in symbolic quantifier form. Write a denial in symbolic quantifier form, distributing the negation as far as possible. Finish by writing a meaningful denial in ordinary English. Let the universe be the set of all real numbers. Find solutions HERE .




RETURN to The Proof Page .





Please e-mail your comments, questions, or suggestions to D. A. Kouba at kouba@math.ucdavis.edu .



Next: About this document ...
Duane Kouba 2002-06-05