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1 Introduction

In the late 19th and early 20th century, analysts began to realize that the Riemann
integral was not adequate for many applications. Of main concern was the fact that the
space R of Riemann integrable functions is not closed under taking point-wise limits of
sequences in R. That is, it is not true in general that:

lim
n→∞

∫
Ω

fn(x) dx =

∫
Ω

f(x) dx

Consider the following, defined for all n > 2 on [0, 1] (Bruckner, 1997):

fn(0) = fn(2/n) = 0 fn(1/n) = n

This function defines a triangle of height n and base 1/n. We take the function fn to be
zero on [2/n, 1]. Each of these triangles is Riemann integrable (with integral 1 on [0, 1])
and we find that:

lim
n→∞

∫ 1

0

fn(x) dx = 1 > 0 =

∫ 1

0

lim
n→∞

fn(x) dx

The inability to take limits of functions in R will be the main focus here, but there
are several other problems with the Riemann integral. For example, the fundamental
theorem of calculus for the Riemann integral requires that the the function f has an
integrable derivative on the interval (a, b) so that we have:∫ b

a

f ′(x) dx = f(b)− f(a)

This is, in practical cases, irrelevant, but continuous functions do exist which poses non-
integrable derivatives. The existence of such functions motivates a better theory, even if
they are extreme constructions. The construction and investigation of the properties for
such functions proves to be quite subtle, and for further information on this point the
reader is encouraged to consult the references below.

Another problem is that there are functions which our intuition says should be inte-
grable, but which are not Riemann integrable. For example, the Dirchlet function:

D(x) =

{
0 , x ∈ Q

1 , x 6∈ Q

is not Riemann integrable (if the reader has not seen this fact before they should prove
it by showing that the upper and lower sums cannot be made to be arbitrarily close). If
we consider that the irrational numbers vastly outnumber the rational numbers, we may
expect that we could simply ignore the contributions to the integral given by the D(x)
for x ∈ Q. This informal argument leads us to suspect that this integral should have a
definite value, namely: ∫ b

a

D(x) dx = b− a (1.1)
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Going back to the previous point, we can construct functions for which the integral
of the limit is not even Riemann integrable. Consider an enumeration {qn}∞n=1, qn ∈ Q,
such that 0 < qn < 1 for all n. Then define the following function:

Dn(x) =

{
0 , x = qm , m 6 n

1 , otherwise

Clearly Dn(x) → D(x) point-wise, and each Dn(x) is Riemann integrable on [0, 1] since
there are only finitely many discontinuities. However the Dirchlet function is not in-
tegrable, so we have explicitly constructed a sequence of Riemann integrable functions
whose limit isn’t even Riemann integrable.

We will see that with the notions of measurable functions and Lebesgue integration
we will be able to construct complete spaces of integrable functions and integrate strange
functions like the Dirchlet function. In Section 3 we outline the conditions under which
the limit of a sequence of integrable functions is integrable, and in Section 4 we look at
spaces of p power summable functions and show that these spaces are complete.

We will proceed in two stages. First, we introduce the minimum amount of measure
theory to understand measurable functions and give a foundation for integration theory.
Next, we develop the Lebesgue integral with the goal of understanding the dominated
convergence theorem, which can be thought of as the result of introductory Lebesgue
integration. Finally, we will explore one of the most important applications of Lebesgue
integration theory, which is the construction of complete functions spaces of integrable
functions.

Unfortunately, we must omit many important and instructive results in our current
discussion, and we will necessarily only cover the bare minimum to glean the essence of
these theories. The reader is encouraged to look through the references and study further
the notions of measure theory, integration, and Lp spaces.

1.1 Notation and Definitions

Before we begin, we consider some notation and definitions which will be used through-
out the remainder of our discussion. We denote the reals, complex numbers, integers,
natural numbers, and rationals by R,C,Z,N , and Q respectively. The natural num-
bers start at 1, and we denote by R+ the set of non-negative real numbers, that is
R+ :=

{
x ∈ R

∣∣ 0 6 x
}

. We shall denote by Ω an open subset of Rd.

Definition 1.1: We say that a sequence fn : Ω → R converges point-wise (or con-
verges) to a function f : Ω→ R, denoted fn → f , if for every x ∈ Ω:

lim
n→∞

fn(x) = f(x)

Definition 1.2: We say that a sequence fn : Ω→ R converges uniformly to a function
f : Ω → R, denoted fn ⇒ f , if given any ε > 0, there exists an N ∈ N such that
whenever n > N we have:

|fn(x)− f(x)| < ε

for all x ∈ Ω.
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Recall that uniform convergence is stronger than point-wise convergence in two senses.
First, any sequence which converges uniformly necessarily also converges point-wise. Sec-
ond, if the sequence of functions fn are each continuous on Ω, then f will be continuous
on Ω. If each fn is differentiable on Ω, then f will be differentiable on Ω.
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2 Measure Theory

Measure theory is central to our new formulation of the integral which will be presented
in the next section. The central idea in measure theory is to generalize our intuitive
notions of volume to include a much broader class of sets. In one dimension, we think of
volume as length, in two dimensions area, and so on and so forth.

Fundamental to the notion of measure is specifying a class of sets which will be
’measurable’. A measure space will then be the measurable sets along with a function
µ : Ω→ R+ which assigns to each measurable set in Ω a non-negative ’measure’.

Clearly we would like the class of sets which are measurable to behave ’well’, and the
following discussion will seem, at first, somewhat unmotivated. This is an unfortunate
quirk of the present exposition, but when we define measure, the following will make
more sense.

We mention at the start that there are sets, most notably subsets of Rd, which are
not measurable. These sets are ’pathological’ by any stretch of the imagination, and we
defer the construction of such sets to the references. It is, of course, instructive to realize
such sets do exist.

Definition 2.1: A collection Σ of subsets σ ⊂ Ω is called a sigma-algebra if it satisfies:

1. If σ ∈ Σ, then Ω \ σ ∈ Σ.

2. If σ1, σ2, · · · is a countable family of sets in Σ, then
⋃∞

j=1 σj ∈ Σ.

3. Ω ∈ Σ.

In addition to being closed under taking unions, sigma-algebras are also closed under
countable intersections and pairwise complements. We denote Ω \ σ by σC , where it is
understood that the complement is taken in Ω.

Theorem 2.2: Let Σ be a sigma-algebra of Ω, then:

1. ∅ in Σ.

2. If σ1, σ2, · · · is a countable family of sets in Σ, then
⋂∞

i=1 σi ∈ Σ.

3. If σ1, σ2 ∈ Σ, then σ1 \ σ2 ∈ Σ.

Proof: The first statement is obvious since Ω\Ω = ∅ ∈ Σ by property (1) in Definition
2.

The second statement is a consequence of Demorgan’s law:

∞⋂
i=1

σi =
∞⋃
i=1

σi
C ∈ Σ

since the countable union of elements in Σ is in Σ and σi
C ∈ Σ.

The third property follows from:

σ1 \ σ2 = (Ω \ σ2) ∩ σ1

where Ω \ σ2 ∈ Σ by property (1) in Definition 2 and the intersection of two elements of
Σ is in Σ by property (2) which we just proved.
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�

This sigma-algebras prove to be the proper setting to discuss measure because they
will satisfy the countable additivity (defined below) of the measure in a very nice way.

2.1 Measure Spaces

We start our discussion of measure spaces by formally defining a measure:

Definition 2.3: Given a sigma algebra Σ, a function µ : Σ→ R+ is called a measure
if:

1. µ(∅) = 0 and

2. (Countable Additivity) given a sequence of disjoint sets A1, A2, · · · with Aj ∈ Σ we
have:

µ

(
∞⋃
j=1

Aj

)
=
∞∑
j=1

µ(Aj)

Students familiar with probability will immediately see that probability spaces are
measure spaces, where Σ is the state space and µ(σ), σ ∈ Σ is the probability of the
event σ occurring.

Definition 2.4: A measure space is a three-tuple consisting of a measure µ, set Ω,
and sigma algebra Σ of Ω, denoted (Ω,Σ, µ).

A measure space is useful because it specifies the space, the sigma-algebra on that
space, and how we are measuring the sets in the sigma-algebra. Note that there can
be many different sigma-algebras for a space Ω, much like there can be many different
topologies for a space of points.

The notion of measure allows us to make a convenient statement about functions. If
two functions f and g are such that f(x) = g(x) for all x ∈ Ω except for on some subset
E ⊂ Ω such that µ(E) = 0, we say that f and g agree µ-almost everywhere, or µ-a.e.
Our intuition about the integral leads us to suspect the following. Let f, g : Ω → R be
two functions which agree µ-a.e., then a reasonable definition of integration should have:∫

Ω

(f − g) dx = 0

and indeed, as we shall see below, this is the case.

2.2 The Lebesgue Measure on Rd

We leave construction of the Lebesgue measure to the references, however we would like
to point out that the Lebesgue measure is indeed our natural idea of a measure on Rd;
that is, it assigns to d-dimensional volumes our intuitive notion of volume. For example,
the familiar equation of the volume of the d-dimensional sphere is given by:

Ld(Br(x)) =
2πd/2rd

dΓ(d/2)
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With regards to measures on Rd, the Borel sigma-algebra B is the natural sigma-
algebra to use in the Lebesgue measure space of Rd. B is the sigma-algebra generated by
the open balls of Rd, and contains all open and closed sets of Rd. The Borel sigma-algebra
will come up again and again in further study of measure theory.

There are some things to keep in mind about the Lebesgue measure on Rd. For
example, the Lebesgue measure is translationally invariant, and moreover it is the only
measure on Rd which is translationally invariant.

Proposition 2.5: Let (R,B, µ) be the Lebesgue measure space of R. Then µ(Q∩[a, b]) =
0.

Proof: The Lebesgue measure of the set containing a single point is zero. That is, given
q ∈ R, µ({q}) = 0. Note that {q} ∈ B and that we can construct Q∩ [a, b] as a countable
union of disjoint points. Let {qj}∞j=1 be an enumeration of the rational numbers, then:

Q ∩ [a, b] =
⋃
j

{qj} ⇒ µ(Q ∩ [a, b]) =
∑
j

µ(qj) = 0

by countable additivity as desired.

�

Recall that in Section 1 we discussed the Dirchlet function and our intuition told us
that we could ignore the contributions to the integral from x ∈ Q. The Proposition 2.2
is the first step towards making this intuition precise.

2.3 Measurable Functions

Consider some function f : Ω→ R, the level sets of this function are given by:

Sf (t) =
{
x ∈ Ω

∣∣ f(x) < t
}

(2.1)

We say that the function f is measurable if for every t ∈ R the level set Sf (t) is mea-
surable, that is Sf (t) ∈ Σ. Note that we do not need to specify a particular measure,
only that the level sets themselves are measurable. That is, given a measure space, the
measurability of a function depends on the sigma-algebra we have chosen not the measure!

Definition 2.6: Let Σ be a sigma-algebra of Ω. A non-negative function f : Ω→ R+

is said to be measurable if for all t ∈ R+, the level set Sf (t) ∈ Σ.

We address now an important result which is used (not by us here) extensively in the
further study of integration.

Proposition 2.7: Let {fj}∞j=1 be a sequence of measurable functions fj : Ω→ R. Then:

inf
j
fj(x) and sup

j
fj(x) and lim inf

j→∞
fj(x) and lim sup

j→∞
fj(x)

exist and are measurable (where existence is into the extended real numbers).
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Proof: Note that:{
x ∈ Ω

∣∣ sup
j
fj(x) > t

}
=
⋃
j

{
x ∈ Ω

∣∣ fj(x) > t
}

and by property (2) in Definition 2, supj fj is measurable. infj fj is also measurable since:

inf
j
fj(x) = − sup

j
(−fj(x))

Finally, lim infj→∞ fj and lim supj→∞ fj are measurable since:

lim sup
j→∞

fj(x) := inf
k
{sup
j>k

fj} and lim inf
j→∞

fj(x) := sup
k
{inf
j>k

fj}

�

And finally, we show that the limit of a sequence of measurable functions is itself
measurable.

Corollary 2.8: Let {fj}∞j=1 be a sequence of measurable functions fj : Ω → R. Then
if we have:

lim
j→∞

fj(x) = f(x)

then f is measurable.

Proof: Since f(x) = lim supj→∞ fj(x) = lim infj→∞ fj(x), the result follows from
Proposition 2.3 above.

�

This makes handling functions ’nice’, since we can pass the limits, and even limit
superiors and inferiors around without worrying about the measurability of the resulting
function.
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3 Integration

We are now equipped to define an integral based on measurable functions. Let f : Ω→ R
be a function and µ : Ω→ R+, that is f takes on only positive values and zero. Let

Ff (t) := µ(Sf (t))

We now define the Lebesgue integral of the function f on Ω as:∫
Ω

f µ(dx) :=

∫ ∞
0

Ff (t) dt (3.1)

where the integral on the RHS is a Riemann integral and we interpret divergence of the
Riemann integral on the RHS as the definition of divergence of the integral on the LHS.

It is important to point out why this definition works, that is the Riemann integral
on the RHS converges in an appropriate manner. The function Ff (t) is a monotonically
decreasing function since for all t1 < t2, Sf (t2) ⊂ Sf (t1) and countable additivity then
implies that Ff (t2) 6 Ff (t1). We know from undergraduate analysis that such a function
will be Riemann integrable.

We will often write
∫

Ω
f ,
∫

Ω
f dµ or

∫
Ω
f dx depending on the situation and which

is most convenient. Many authors use differing conventions. Unless otherwise stated, all
integrals are to be taken as Lebesgue integrals.

We can easily extend this definition to all real-valued functions in the following way.
Let f : Ω→ R be given and define:

f+(x) :=

{
f(x) , f(x) > 0

0 , otherwise
f−(x) :=

{
−f(x) , f(x) 6 0

0 , otherwise

We now have that f = f+ − f−. Since both f+, f− : Ω→ R+, we can define a Lebesgue
integral for each and we get the more general definition:∫

Ω

f =

∫
Ω

f+ −
∫

Ω

f− (3.2)

where the integral on the left is the Lebesgue integral and the integrals on the right are as
defined as in (3.1). In a similar way the definition can be extended to any complex-valued
f = u+ iv, u, v : Ω→ R by:∫

Ω

f =

∫
Ω

u+ −
∫

Ω

u− + i

(∫
Ω

v+ −
∫

Ω

v−

)
For the rest of our discussion we will use the integral defined in (3.2).

It is pedagogical to think geometrically about the integral we have just defined and
to compare it to the Riemann integral. In addition to gaining deeper understanding, the
reason for agreement between the Lebesgue and Riemann formulations will become more
clear. In (3.2), we are effectively integrating ’bottom up’, rather than ’left to right’.

Finally, we leave off with a theorem linking the Riemann integral to the Lebesgue
integral.

Theorem 3.1: Let f : Rd → R be a Riemann integrable function on a compact set
Γ ⊂ Rd, then the Riemann integral agrees with the Lebesgue integral (3.2).
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There is a caveat to Theorem 3, a function f may be indefinitely Riemann integrable
on a set but not Lebesgue integrable at all.

Before moving on, we mention an identity which can be useful in general. Let Θ(s)
be the Heaviside step function:

Θ(s) :=

{
1 if s > 0

0 if s < 0

then we have the following for the Lebesgue integral:∫ ∞
0

Ff (t) dt =

∫ ∞
0

(∫
Ω

Θ(Ff (x)− t) µ(dx)

)
dt

=

∫
Ω

(∫ f(x)

0

dt

)
µ(dx) =

∫
Ω

f(x) µ(dx)

which agrees with our definition (3.1).

3.1 Integration Theorems

We now move on to theorems regarding our new integral, culminating in the dominated
convergence theorem. We begin by proving that our integral is linear, as is to be expected
from a reasonable definition of integration. The proof of this is trivial for Riemann
integrals, but we find that it is not trivial in the case of the Lebesgue integral.

Theorem 3.2: Let f, g : Ω→ R be summable functions and let λ, γ ∈ R, then:∫
Ω

(λf + γg) dµ = λ

∫
Ω

f dµ+ γ

∫
Ω

g dµ

In other words, the integral (3.2) is linear.

Proving that the Lebesgue integral is surprisingly tricky, unlike the case for the Rie-
mann integral. For a proof of this result, see (Stein, 2005).

Our next result begins our discussion of convergence.

Theorem 3.3: (Monotone Convergence Theorem) Let fj → f be an increasing
sequence of summable functions on (Ω,Σ, µ). Then f is measurable and:

lim
j→∞

∫
Ω

fj µ(dx) =

∫
Ω

f µ(dx)

where the RHS is finite and f is summable if and only if the LHS is finite.

Note that for a sequence to be increasing on Ω we mean that for all j, fj+1(x) > fj(x)
for a.e. x ∈ Ω.

Theorem 3.4: (Dominated Convergence Theorem) Let {fn}∞n=1 be a sequence
of functions fn : Ω → R converging point-wise to f . Suppose that there is a function G
such that |fn(x)| 6 G(x) for all x ∈ Ω and n ∈ N. Then:

lim
n→∞

∫
Ω

fn µ(dx) =

∫
Ω

f µ(dx) (3.3)
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The importance of this theorem cannot be overstated. In particular, this gives us the
ability to take the point-wise limits of functions and exchange taking limits of functions
with integration. The same does not hold for Riemannian integration, and in particular,
bounded functions and most ’nice’ functions accept this interchange of limit and integral.

The next result is a strengthening of the dominated convergence theorem which can
be useful in practice.

Theorem 3.5: Let {fn}∞n=1 be a sequence of functions fn : Ω→ R converging pointwise
to f . Let {Gn}∞n=1 be another sequence of functions Gn : Ω → R+ converging to G. If
|fn(x)| 6 Gn(x) for all x ∈ Ω, n ∈ N and:

lim
n→∞

∫
Ω

|G(x)−Gn(x)| µ(dx) = 0

Then:

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ

3.2 The Dirchlet Function

We return to a discussion of the Dirchlet function:

D(x) =

{
0 , x ∈ Q

1 , x 6∈ Q
(3.4)

which we discussed in Section 1. We argued informally that µ(Q) = 0, and we saw in
Proposition (??) that this is indeed the case. It should be immediately obvious, given our
definition of the integral, that the Dirchlet function (3.4) is integrable on any bounded
domain.

Corollary 3.6: Let [a, b] be an interval in R. Then the integral of the Dirchlet function
(3.4) is: ∫ b

a

D(x) dx = b− a

Proof: This follows from Corollary ?? and the definition (3.1) of the Lebesgue integral.

�

This result in effect tells us that the ’shadow’ of the Dirchlet function onto the real
line is measurable, or has ’volume’. This agrees with our intuition.
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4 Introductory Lp Space Theory

The completion of spaces of integrable functions under point-wise limits give us the
opportunity to work with several ’nice’ function spaces. Nice in the sense that they
are vector spaces with some notion of distance, and are complete, that is any Cauchy
sequence converges.

Many of the proofs will be omitted in this section, but can be found in the references
below.

Definition 4.1: The space Lp(Ω,Σ, µ), often abbreviated to Lp(Ω), is the space of
p-power summable functions f on Ω:∫

Ω

|f |p dµ <∞ (4.1)

along with the Lp norm:

||f ||p = ||f ||Lp(Ω) :=

(∫
Ω

|f |pdµ
)1/p

(4.2)

defined whenever 1 6 p <∞.

We make two important notes, the first is that the reason for excluding p < 1 is that
in this case, the Lp norm fails to be a norm as can be easily checked (specifically it does
not satisfy the triangle inequality). Second, we will extend the definition of Lp-spaces to
include L∞(Ω), but we defer the discussion to Section 4.3 below.

4.1 Hilbert and Banach Spaces

The relegation of Hilbert and Banach spaces to a single subsection should not fool the
reader into thinking that these notions are in any way unimportant. Quite to the contrary,
these two classes of spaces need to be studied extensively in analysis. We will only touch
the surface of these spaces, and learn enough to apply our knowledge to the topic of Lp

spaces.

Definition 4.2: A Banach space is a complete, normed, vector space.

It should be clear why a Banach space is nice to work with. We can freely take
(convergent) limits, we have a geometric notion of distance provided by the norm, and
we inherit all of the nice properties of a vector space (we normally take the vector space
over C).

The importance of this notion is that Lp-spaces are conveniently Banach spaces.

Theorem 4.3: The space Lp(Ω,Σ, µ), for some 1 6 p <∞ as defined in (4) is Banach
space in the norm defined by (4.2).

This theorem establishes that the Lp spaces are nice. We can immediately see as
a consequence of Lp(Ω) being a Banach space, any sequence fk → f with fk ∈ Lp(Ω)
necessarily implies that f is also in Lp(Ω).

Recall the class of functions R of Riemann integrable functions discussed in the intro-
duction. It is not entirely obvious that we could not formulate Lp spaces using Riemann
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integrable functions, rather than Lebesgue integrable ones. However, recall that R is not
closed under taking point-wise limits under integrals. That is, R is not complete in the
Lp norm! This lack of completeness is what makes Lp a much better space to work with
then R.

Definition 4.4: A Hilbert space H is a Banach space equipped with an inner
product (·, ·) : H ×H → R+ such that ||·|| = (·, ·). That is, a Hilbert space is a Banach
space equipped with an inner product generated by its norm.

Hilbert spaces arise as infinite-dimensional generalizations of Euclidean spaces, and
because they are equipped with an inner product, carry a notion of orthogonality. We
are concerned with the space L2, which shows up in many branches of analysis, most
notably the study of the Fourier transform.

Theorem 4.5: The space L2(Ω,Σ, µ) is a Hilbert space with the inner product:

||f ||L2(Ω) = (f, f) =

(∫
Ω

f 2 µ(dx)

)1/2

(4.3)

generating the L2 norm ||f ||L2(Ω) (4.2).

One last point to make about Lp-spaces is that their elements are not functions ! To
see why this is the case, consider two functions f and g on Ω which agree µ-a.e.. Then
certainly their integrals will agree, and:

||f − g||Lp =

(∫
Ω

|f − g|2 µ(dx)

)1/p

= 0

which, according to the vector space axioms, means that f = g. Since the functions don’t
equal each other, the elements of the Lp space must be equivalence classes of functions
which agree µ-a.e. and we say that f ≡ g. Thinking of the elements of an Lp space is
rarely dangerous, but it is an important thing to keep in the back of your head.

4.2 Lp Inequalities

Lp theory has several fundamental inequalities which color the study of these spaces.

Theorem 4.6: (Hölder’s inequality) Let p, q be dual indices (meaning that 1/p +
1/q = 1) with 1 6 p 6 ∞. Let f ∈ Lp and g ∈ Lq. Then the product f(x)g(x) (taken
point-wise) is in L1 and:

||fg||L1 6 ||f ||Lp ||g||Lq (4.4)

We will not prove this inequality here, see (Lieb 2001) for a complete proof and
discussion. The proof requires another inequality known as Jensen’s inequality which we
do not state. We remark that the case that p = q = 2, Hölder’s inequality becomes the
Schwartz inequality: ∣∣∣∣∫

Ω

fg

∣∣∣∣2 6 ∫
Ω

|f |2
∫

Ω

|g|2

13



The following is another classic inequality in the theory of Lp spaces.

Theorem 4.7: (Minkowski’s inequality) Let 1 6 p < ∞ and f, g ∈ Lp, then
f + g ∈ Lp and:

||f + g||Lp 6 ||f ||Lp + ||g||Lp (4.5)

This is a generalization of the triangle inequality, which is actually used in proving
that Lp is a Banach space, but we have gone slightly out of order here since we are not
providing proofs to these theorems.

Theorem 4.8: (Separability of Lp) The space Lp(Ω) is separable. That is, there
exists a countable collection {fk} with fk ∈ Lp(Ω) for each k such that linear combinations
of fks are dense in Lp(Ω.

Separability is useful in general because linear functionals on Lp spaces are charac-
terized by their behavior on dense subsets of Lp. This can be advantageous in some
situations.

4.3 The Space L∞

The next logical question is what generalizations can we make to Lp spaces. The immedi-
ate generalization is the dual space of L1, which fundamentally means we need to define
L∞ in a way that is reasonable.

Definition 4.9: The L∞ norm is defined by:

||f ||∞ = ||f ||L∞(Ω) := inf
{
C > 0

∣∣ |f(x)| 6 C a.e. ∀ x ∈ Ω
}

(4.6)

and the space L∞(Ω) is the space of functions:

L∞(Ω) :=
{
f
∣∣ ||f ||∞ <∞

}
(4.7)

That is, L∞(Ω) is the space of bounded (more precisely essentially bounded) functions on
Ω.

We want to be sure that this definition agrees with the definition that we had before,
in other words, we want to show that:

lim
p→∞
||f ||p = lim

p→∞

(∫
Ω

|f |p µ(dx)

)1/p

= ||f ||∞

The following proof is provided by (Stein 2011).

Theorem 4.10: Suppose f ∈ L∞ is supported on a set E ⊂ Ω of finite measure. Then
f ∈ Lp for all 1 6 p <∞ and:

lim
p→∞
||f ||p = ||f ||∞

14



Proof: If µ(E) = 0 we are done, since f ≡ 0 and ||f ||p = ||f ||∞ = 0 for all p. Therefore,
assume µ(E) > 0. Then:

||f ||p =

(∫
Ω

|f |pdµ
)1/p

6

(∫
E

||f ||p∞ dµ
)1/p

6 ||f ||∞ µ(E)1/p

where µ(E)1/p → 1 as p→∞ so lim supp→∞ ||f ||p 6 ||f ||∞.
Conversely, given any ε > 0, we have:

µ(
{
x
∣∣ |f(x)| > ||f ||∞ − ε

}
) > δ

for some δ > 0. Then we have:∫
Ω

|f |p dµ > δ(||f ||∞ − ε)
p

Therefore, lim infp→∞ ||f ||p > ||f ||∞ − ε. Since ε > 0 was arbitrary, we have that:

lim sup
p→∞

||f ||p 6 ||f ||∞ 6 lim inf
p→∞

||f ||p

and the result follows.

�
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