Final Solutions:
la) A inv $\Leftrightarrow \operatorname{det} A \neq 0$

$$
\operatorname{det}\left(A^{k}\right)=(\operatorname{det} A)^{k} \neq 0
$$

(16)
ib) A inv $\Leftrightarrow A^{k} \operatorname{inv} \Leftrightarrow \operatorname{det}\left(A^{k}\right) \neq 0$

$$
\begin{aligned}
1=\operatorname{det}\left(A^{k}\left(A^{k}\right)^{-1}\right) & =\operatorname{det}\left(A^{k}\right) \operatorname{det}\left(A^{k}\right)^{-1} \\
& =(\operatorname{det} A)^{k} \operatorname{det}\left(A^{k}\right)^{-1} \\
\Rightarrow \operatorname{det}\left(A^{k}\right)^{-1} & =\frac{1}{(\operatorname{det} A)^{k}}
\end{aligned}
$$

lc) See practice final
Id $\operatorname{det}(A)=\operatorname{det}\left(P J P^{-1}\right) \quad, P$ is invertible

$$
\begin{aligned}
& =\operatorname{det}(P) \operatorname{det} J \operatorname{det}\left(P^{-1}\right) \\
& =\frac{\operatorname{det} P}{\operatorname{det} P} \operatorname{det} J=\operatorname{det} J
\end{aligned}
$$

* You can also use

2) Find $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ diagonalization!

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{2} & =\binom{1}{2} \\
\Rightarrow a+2 b & =1 \\
c+2 d & =2 \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{-1}{2} & =\binom{2}{-4} \\
-a+2 b & =2 \\
-c+2 d & =-4
\end{aligned}
$$

$$
\left(\begin{array}{cccc:c}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 2 & 2 \\
-1 & 2 & 0 & 0 & 2 \\
0 & 0 & -1 & 2 & -4
\end{array}\right)
$$

$$
\begin{aligned}
& R_{4}=R_{4}+R_{2} \\
& \begin{array}{r}
R_{3} \\
\sim
\end{array} R_{3}+R_{1}\left(\begin{array}{llll:l}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 2 & 2 \\
0 & 4 & 0 & 0 & 3 \\
0 & 0 & 0 & 4 & -2
\end{array}\right) \\
& \begin{array}{l}
R_{2} \leftrightarrow R_{3} \\
1 / 4 R_{2} \\
1 / 4 R_{4}
\end{array} \sim\left(\begin{array}{cccc:c}
1 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 2 & 1 \\
0 & 2 \\
0 & 0 & 0 & 1 & 1
\end{array}-1 / 2\right) \\
& \begin{array}{c}
R_{1}=R_{1}-2 R_{2} \\
R_{3}=R_{3}-2 R_{4} \\
\sim
\end{array}\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & -1 / 2 \\
0 & 1 & 0 & 0 & 1 / 4 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & 1-1 / 2
\end{array}\right) \\
& \text { So } \quad A=\left(\begin{array}{cc}
-1 / 2 & 3 / 4 \\
3 & -1 / 2
\end{array}\right)
\end{aligned}
$$

3a) We require

$$
\begin{array}{cc}
x^{2}+y^{2}=0 & x^{2}+y^{2}=0 \\
z=0 & z=0 \\
x+z=0 & \Rightarrow \\
y^{2}+z^{3}=0 & \Rightarrow
\end{array}
$$

So kerf $=\{(0,0,0)\}$

3b)

$$
\begin{aligned}
& f(x, y, z)=(\alpha, \beta, \gamma, b) \\
& =\left(x^{2}+y^{2}, z, x+z, y^{2}+z^{3}\right) \\
& \Rightarrow \beta=z, \alpha=x^{2}+y^{2} \\
& x=\sqrt{\alpha-y^{2}} \\
& \Rightarrow \gamma=\sqrt{\alpha-y^{2}}+\beta \\
& \Rightarrow \partial=\alpha-x^{2}+\beta^{3}
\end{aligned}
$$

$$
\begin{aligned}
& x=\sqrt{\alpha-y^{2}}=\gamma-\beta \\
& x^{2}=\gamma^{2}-2 \gamma \beta+\beta^{2}
\end{aligned}
$$

so $\quad \alpha=\alpha-\gamma^{2}+2 \gamma \beta+\beta^{2}+\beta^{3}$
So

$$
\begin{aligned}
\operatorname{Rng} f= & \left\{(\alpha, \beta, \gamma, \gamma) \in \mathbb{R}^{4} \mid\right. \\
& \left.\alpha-\alpha+\gamma^{2}-2 \gamma \beta-\beta^{2}-\beta^{3}=0\right\}
\end{aligned}
$$

Bc) f is not 1-1,

$$
\begin{aligned}
& f(0,1,0,0)=(1,0,0,1) \\
& f(0,-1,0,0)=(1,0,0,1)
\end{aligned}
$$

not onto since $(-1,0,0,0)$ not in range.
4) We look at how

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\vdots & \vdots & & \vdots \\
a_{51} & \cdots & & a_{55}
\end{array}\right)\left(\begin{array}{c}
v \\
w \\
x \\
y \\
z
\end{array}\right)
$$

behaves

$$
\begin{aligned}
& a_{11}=-1, a_{12}=1, \\
& f=A=\left(\begin{array}{ccccc}
-1 & 1 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 & -1 \\
1 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1 & -1
\end{array}\right)
\end{aligned}
$$

RREF
~ \quad I

So cank $A=5$ \& by sank-nullity, $\operatorname{dim}(N(A))=0$,

5a) We look for functions such that $\frac{d}{d x} y=\lambda y$ which is solved by

$$
y=c e^{\lambda x}
$$

So the eigenvalues are $\lambda \in \mathbb{R}$. since for any $\lambda \in \mathbb{R}, e^{\lambda x}$ is a solution, hence an eigenvector.

5b) We have only seen transforms on finite dimensional spaces, which will have finitely many eigenvalues.

We have here infinitely many eigenvalues where as normally we have seen finitely many.
6) Since $R[a, b]$ a vs., the subspace theorem says it is sufficient to prove closed under $+\dot{\varepsilon} x$:
(t): f, g have zero mean

$$
\begin{aligned}
\int_{a}^{b} f(x)+g(x) d x & =\int_{a}^{b} f(x) d x \\
& +\int_{a}^{b} g(x) d x \\
& =0+0=0
\end{aligned}
$$

(x):

$$
\begin{aligned}
\int_{a}^{b}(\alpha f)(x) d x & =\alpha \int_{c}^{b} f(x) d x \\
& =\alpha 0=0
\end{aligned}
$$

Fa) No such f exists since the dimension of the domain is smaller than dim of range.

7b) No such f exists since the dimension of the domain is larger than sim of range.

7c) Not possible, $|s|<\operatorname{dim} M_{3 \times 2}$

7d) Not possible, $|s|>\operatorname{dim} \mu_{2 \times 2}$

7e) This can happen. Rank - Nullity says

$$
\operatorname{rank} A+\operatorname{dim}(N(A))=m
$$

11 at most d
so if $m \geqslant 2 d$ this is possible

7f) Not possible. To be similar to a diagonal matrix, must have alg molt = geo molt.

Ba) Since $C^{\prime}(\mathbb{R})$ is a vector space, we must show the set of solutions is closed under x and x. Then the subspace The allows us to conclude set of sols is itself a v.s.
(4) Let u, w solve $\frac{d}{d x} u+u=0, \frac{d}{d x} w+w=0$
then $\frac{d}{d x}(u+w)+(u+w)$

$$
=\frac{d}{d x} u+u+\frac{d}{d x} w+w=0
$$

(x) Let $\alpha \in \mathbb{R}$

$$
\begin{aligned}
& \frac{d}{d x}(\alpha u)+(\alpha u) \\
& \quad=\alpha\left(\frac{d}{d x} u+u\right)=0
\end{aligned}
$$

so the set of sols is a v.s. II

Bb) Since e^{-x} is a solution, the space of solutions must be at least dimension 1 , since $y \in\left\langle e^{-x}\right\rangle$ solves ODE.

Bc) $\frac{d}{d x} y=-y$

$$
\begin{gathered}
\Rightarrow-\int \frac{1}{y} d x=x+c \\
\Rightarrow-\log |y|=x+c \\
y=c_{0} e^{-x}
\end{gathered}
$$

All solutions look like this, lie. a span
Since set of sols is $\left\langle e^{-x}\right\rangle$ and hence has dimension 1 .

9a) Property 1 :

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) \\
\Rightarrow a=1
\end{gathered}
$$

property 2 :

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & b \\
c & d
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 0 \\
c & 0
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & b \\
c & c b
\end{array}\right) \\
\Rightarrow c b=d
\end{gathered}
$$

property 3:

$$
\begin{aligned}
& {\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
c & c
\end{array}\right)\right]^{\top}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & b \\
c & c
\end{array}\right)} \\
& {\left[\begin{array}{ll}
1 & b \\
0 & 0
\end{array}\right)}
\end{aligned}
$$

$$
=\left(\begin{array}{ll}
1 & 0 \\
b & 0
\end{array}\right) \Rightarrow b=0
$$

property 4 :

$$
\begin{aligned}
& {\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right]^{\top}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)} \\
& =\left[\left(\begin{array}{ll}
1 & 0 \\
c & 0
\end{array}\right)\right]^{\top}=\left(\begin{array}{ll}
1 & 0 \\
c & 0
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow \quad c=0
$$

So $A=A^{+}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

9b) This property does not actually hold in general!
ac) $\left(A^{+}\right)^{+}=A$
follows from properties 2 i 1, Let $A^{+}=B$, then by 1

$$
B\left(B^{+}\right) B=B
$$

and by 2

$$
\begin{aligned}
& A^{+} A A^{+}=B A B=B \\
& \quad \Rightarrow A=B^{+}=\left(A^{+}\right)^{+}
\end{aligned}
$$

9d) If A is invertible, all four properties are satisfied, since A^{+}is unique, $A^{+}=A^{-1}$.

10a) We know $A\binom{1}{0}=\binom{1}{0}, A\binom{0}{1}=\binom{1}{2}$ So

So this is a shear $w /$ a slight vertical stretch.

10b)

$$
\begin{aligned}
& \left(A^{2}-2 \mu A\right) w=-\mu^{2} w \\
& \Rightarrow\left(A^{2}-2 \mu A+\mu^{2} I\right) w=0 \\
& \Rightarrow(A-\mu I)^{2} w=0 \\
& \operatorname{det}\left((A-\mu I)^{2}\right)=(\operatorname{det}(A-\mu I))^{2}=0
\end{aligned}
$$

So $\operatorname{det}(A-\mu I)=0$

$$
\Rightarrow \quad(1-\mu)(2-\mu)=0 \Rightarrow \mu=1,2
$$

$$
\begin{aligned}
& (A-I)^{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\binom{a}{b}=\binom{0}{0} \Rightarrow b=0
\end{aligned}
$$

choose $a=1$, then
$W=\binom{1}{0}$ solves for $\mu=1$
(any multiple of w also works)

$$
\begin{gathered}
(A-2 I)^{2}=\left(\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & -1 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)\binom{a}{b}=\binom{0}{0} \\
\Rightarrow a=b
\end{gathered}
$$

$W=\binom{1}{1}$ (or any multiple) for $\mu=2$

3C) These are the eigenvectors/ eigenvalues of $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)$ since they satisfy the same char polynomial, and the same eigenvector eggs.
38)

$$
\begin{aligned}
& A\left(A^{2}+3 \mu^{2} I\right) w-\mu\left(3 A^{2}+\mu^{2} I\right) w \\
= & \left(A^{3}-3 \mu A^{2}+3 \mu^{2} A-\mu^{3} I\right) w \\
= & (A-\mu I)^{3} w
\end{aligned}
$$

So true for $\mu=1,2$ and

$$
\begin{aligned}
& w=\binom{1}{0},\binom{1}{1} \text { (scaler molt) } \\
& \text { by }(a),(b)
\end{aligned}
$$

(All eqs are the same)

