MAT 22A SS1:
pw: easyguiz

Matricies
Data which admit represent, as matricies
\rightarrow linear systems of eqs.

$$
\begin{aligned}
& \left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\left[\begin{array}{l}
4 \\
8 \\
7
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
7
\end{array}\right)\right. \\
& A \quad \bar{x}=b \\
& A \bar{x}=b \\
& \bar{x}=\frac{1}{\Delta} b
\end{aligned}
$$

\rightarrow Graphs (computer science)

(1) | 2 | 1 | 2 | 3 | 4 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 0 | |
| 3 | 2 | 1 | 0 | 1 | 1 |
| 3 | 0 | 1 | 0 | 1 | |
| 4 | 1 | 1 | 0 | | |

$$
\left.V\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right), \quad\right]
$$

1	1	2	3	4
2	0	3	0	0
3	0	0	1	0
4	0	3	0	2
0	1	0	2	

$$
\left(\begin{array}{llll}
0 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 3 & 0 & 2 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

not symmetric

Ordinary Differential Eq.
\rightarrow Linear systems of ODEs

$$
\begin{aligned}
& \frac{d y}{d x}=z \\
& \frac{d z}{d x}=y \\
& \xrightarrow[1]{2} \\
& \frac{d y_{1}}{d t}=\left(i-u_{1}\right) y_{1}+r_{1} y_{2} \\
& \frac{d y_{2}}{d t}=c_{2} y_{1}-v_{2} y_{2} \\
& \left(\begin{array}{cc}
i-u_{1} & r_{1} \\
r_{2} & u_{2}
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{y_{1}^{\prime}}{y_{2}} \\
& A \frac{d y}{d t}=y \\
& \text { PW: graph }
\end{aligned}
$$

- Matrices are rectangular arrays of entries taken from a field \mathbb{F}.
"field" or \mathbb{F}
think \mathbb{R} or \mathbb{C}

$$
A=\left(a_{i j}\right)_{m \times n}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

$a_{i j}$ is the entry in th cow, jth column $m \times n$ is m rows by n columns
$\mathbb{R}=$ real numbers
$\mathbb{C}=$ complex numbers $\quad \sqrt{-1}=i$

$$
a \in \mathbb{C} \Rightarrow a=b+i c, \quad b, c \in \mathbb{R}
$$

a is a element of \mathbb{P}

$$
\begin{aligned}
& \left(a_{i j}\right)_{m \times n} \quad \begin{array}{l}
1 \leqslant i \leqslant m \\
1 \leqslant j \leqslant n
\end{array} \\
& A=\left(a_{i j}\right)_{m \times n}
\end{aligned}
$$

"A is an $m \times n$ matrix over the field (F"

Symbolically: $A \in \mathcal{M}_{m \times n}(\mathbb{F})$
He set of $m \times n$ matricier with entries in \mathbb{F}

$$
a_{i j} \in \mathbb{F}
$$

ex: $\quad A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$

$$
a_{11}, a_{12}, a_{21}, a_{22} \in \mathbb{R}
$$

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

ex:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 2 & 4 \\
7 & -3 & 8 . \overline{13}
\end{array}\right) \in M_{2 \times 3}(\mathbb{R}) \\
& \binom{4+3 i}{1+9 i} \in M_{2 \times 1}(\mathbb{C})
\end{aligned}
$$

- "vectors": commonly it means

$$
v \in \mu_{1 \times n}(\mathbb{R}) \text { or } v \in \mu_{m \times 1}(\mathbb{R})
$$

$\rightarrow M_{1 \times n}(\mathbb{R})$ row vector

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 2 & 9 & 6
\end{array}\right) \mu_{1 \times 4}(\mathbb{R}) \\
& (3.1) \in M_{1 \times 2}(\mathbb{R}) \\
& \left(\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0
\end{array}\right) \in M_{1 \times n}(\mathbb{R})
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
\hat{\imath} & \imath \\
a & b
\end{array}\right)
\end{aligned}
$$

"

- Isomorphism"

Definition: Two sets $A \& B$ ane isomorphic if there is a function F from A to B such that for every $a \in A$, there is a unique $b \in B$ such that $F(a)=b$

And for every $b \in B$, thane is a unique at A such that $F(a)=b$ ar $a=F^{-1}(a)$.

We write $A \cong B$ and say A is isomorphic to B.

Claim: $\mathbb{R}^{n} \cong M_{1 \times n}(\mathbb{R}) \cong M_{n \times 1}(\mathbb{R})$
What does a $\in \mathbb{R}^{n}$ look like?

$$
\begin{aligned}
& a \in \mathbb{R}^{n} \text { means } \\
& a=\left(a_{1}, a_{2}, \cdots, a_{n}\right), a_{i} \in \mathbb{R}
\end{aligned}
$$

What does $b \in M_{1 \times n}$ (12) look like?

$$
\begin{aligned}
& b=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right] \\
& a=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \mathbb{R}^{n} \\
& \bar{a}=\left[\begin{array}{llll}
\hat{\imath} & a_{2} & \cdots & a_{n}
\end{array}\right] \in \mu_{1 \times n}(\mathbb{R}) \\
& F\left(\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right) \\
& =\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right] \\
& \Rightarrow \mathbb{R}^{n} \cong \mu_{1 \times n}(\mathbb{R}) \\
& \bar{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \in M_{n_{x 1}}(\mathbb{R}) \\
& \mathbb{R}^{n} \cong \mu_{n \times 1}(\mathbb{R}) \text {. }
\end{aligned}
$$

ex problem: Integration in 3 space

- Preview: linear systems of Egs.

Big idea: convert to matrix egg. and solve those

$$
\left.\begin{array}{c}
x+y+z=1 \\
2 x+2 y+z=1 \\
x+2 y+3 z=3 \\
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array} 1\right. \\
1 \\
2
\end{array}\right), \bar{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in M_{3 \times 1}(\mathbb{R})
$$

We write (*) as

$$
A \bar{x}=b
$$

If $\quad A \in \mathbb{R}, \bar{x} \in \mathbb{R}, b \in \mathbb{R}$
solution is

$$
\begin{aligned}
\bar{x} & =\frac{1}{A} b, A \neq 0 \\
& =A^{-1} b, \quad A \in \mathbb{R} \Rightarrow A^{-1}=\frac{1}{A}
\end{aligned}
$$

$$
\bar{x}=A^{-1} b
$$

we need to

- Define A^{-1}
- Define multiplication between A \& \bar{x} and $A^{-1} \& b$
$\bar{x}=A^{-1} b$ is the solution this is "easy" to compute
- Algebra wi matricies
\rightarrow Two simple concepts: addition is scalar multiplication

$$
\begin{aligned}
& A, B \in \mu_{m \times n}(\mathbb{F}) \\
& A+B \\
& A=\left(a_{i j}\right)_{m \times n}, B=\left(b_{i j}\right)_{m \times n} \\
& A+B:=\left(a_{i j}+b_{i j}\right)_{m \times n} \\
& \in \mu_{m_{\times n}(\mathbb{F})} \\
& A=\left(\begin{array}{ll}
1 & 2 \\
4 & 2
\end{array}\right), B=\left(\begin{array}{cc}
4 & -3 \\
9 & 1
\end{array}\right) \\
& A+B=\left(\begin{array}{cc}
5 & -1 \\
13 & 3
\end{array}\right)
\end{aligned}
$$

- Scalar multiplication

Scalar $\sim \mathbb{R}$ or \mathbb{C}

$$
\begin{aligned}
& \alpha \in \mathbb{R}, A \in \mu_{m \times n}(\mathbb{R}) \\
& \alpha A:=\left(\alpha a_{i j}\right)_{m \times n}
\end{aligned}
$$

Ex:

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
3 & 2 \\
4 & -3 \\
-9 & 7
\end{array}\right) \\
& 2 A=\left(\begin{array}{cc}
6 & 4 \\
8 & -6 \\
-18 & 14
\end{array}\right)
\end{aligned}
$$

