22A Lecture 2: O6 / 24/20

- Closure:
$\rightarrow \mu_{m \times n}(\mathbb{C})$ under addition

Def: A set E is closed under the operation (H) if for every $a, b \in E, a \oplus b \in E$.

Ex \mathbb{I} is closed under t

$$
a, b \in \mathbb{R} \quad a+b \in \mathbb{R}
$$

The: (Closure of $M_{m \times n}(\mathbb{C})$ under addition ? scalar multiplication)
Let $A_{1} B \in M_{m \times n}(\mathbb{C})$, then for every $\alpha \in \mathbb{C}, \alpha A \in M_{m \times n}(\mathbb{C})$ and

$$
A+B \in M_{m \times n}(\mathbb{Q})_{=}
$$

$$
\text { Recall } \quad A=\left(a_{i j}\right)_{m \times n}=(e \cdot)
$$

$$
\alpha A=\left(\alpha a_{i j}\right)_{m \times n}, A+B=\left(a_{i j}+b_{i j}\right)_{m_{\times n}}
$$

scalar multiplication

Pi: We have $A=\left(a_{i j}\right)_{m \times n}, B=\left(b_{i j}\right)_{m \times n}$ where $a_{i j}, b_{i j} \in \mathbb{C}, 1 \leq i \leq m$, and $1 \leqslant j \leqslant n$. We know that \mathbb{C} is closed under addition, and multiplication.

Therefore $\alpha_{a_{i j}}$ and $a_{i j}+b_{i j}$ are in $\$$ for all $i j j$. Therefore $\alpha A=\left(\alpha_{a_{i j}}\right)_{m \times n}$ and $A+B=\left(a_{i j}+b_{i j}\right)_{m \times n}$ are $m \times n$ matcicies $w /$ complex entries. i therese αA \& $A+B$ are in $\mu_{m \times n}(\Phi)$.

- Same proof awl minor tweak giver closure for $M_{m \times n}(\mathbb{R})$.

$$
\alpha \in \mathbb{R}
$$

$$
\forall=\text { for every }
$$

- A digression on fields

Idea is to generalize $I R$ and \mathbb{C}. Mathematicians like generality

* Don't memorize, look up on test.

Def: A field is a set $F_{\text {, together wi two }}$ operations $\oplus,(\otimes$ such that \forall $a, b, c \in \mathbb{F}$
(1): closure under $(\mathbb{A}: a(\pm) b \in \mathbb{F}$
(2): commutivity: $a(\not) b=b(\pm) a$
(3) : associtivity: $a(\not \pm)(b(\not) c)$

$$
=(a \oplus b) \oplus c
$$

(4): zero: There is a $0 \in \mathbb{F}$ such that $\forall a \in \mathbb{F}, \circ \oplus a=a$
干
"1. (5): negatives: $\forall a \in \mathbb{F} \exists(-a) \in \mathbb{F}$
$\Pi>$ such that $a \oplus(-a)=0$

SB: $\quad a \oplus b=a+b, \quad a b=a \otimes b$
(6): closure under $X: \forall a, b \in \mathbb{F}$ $a \otimes b \in \mathbb{F}$
(7) : associativity: $a(x)(b \otimes c)$

$$
=(a \otimes b) \otimes c
$$

(8): commutative: $a \otimes b=b \otimes a$

Gunit element or identity
(9): one : $\exists \quad l \in \mathbb{F}$ such that $\forall a \in F \quad a \& 1=a$
(10): Recipricols: $\forall a \in \mathbb{F}, a \neq 0$ $\exists a^{-1} \in \mathbb{F}$ such that $a \otimes a^{-1}=1$.
(11): Distribution over addition:

$$
a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)
$$

Ex \mathbb{R} and $\Phi(\Psi=+, Q=x$
\rightarrow Field of two elements:

$$
\begin{array}{ll}
\{0,1\}, & 0 \oplus 0=0 \\
1 \otimes 1 & =0,|\oplus|=0 \\
& 0 \oplus 1=1=1 \oplus 0 \\
& 1 \otimes 0=0,0 \otimes 0=0 \\
\text { is a member } & 1 \otimes \mid=1 .
\end{array}
$$

$\rightarrow C^{\circ}\left(\mathbb{R}^{\prime}\right)$ is the space of continuous functions almost a field
but $\left\{f \in C^{\circ}(\mathbb{R}) \mid\right.$ ethier $\left.f>0, f<0\right\}$ and $\{f=0\}$
$1=1, f=0$ is zero $f^{-1}=\frac{1}{f}$.
11 = identity element, one w/ two bars

- solving linear Egs
\rightarrow Some geomertry

$$
\left\{\begin{array}{l}
\frac{1}{2} x-y=0 \\
x+y=3
\end{array}\right.
$$

goal: find (a, b)

$$
\begin{aligned}
& \frac{1}{2} x-y+x+y=3 \\
& \frac{3}{2} x=3 \Rightarrow x=2 \\
& x+y=3 \\
& 2+y=3
\end{aligned}
$$

So $(a, b)=(2,1)$

$$
\left(\begin{array}{cc}
1 / 2 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{3}
$$

as of yet undefined some manipulation

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{a}{b} \\
\\
\left\{\begin{array}{l}
x=a \\
y=b
\end{array}\right.
\end{gathered}
$$

- Equivalent systems of egg.
A_{1}, A_{2} are $m \times n$ matricier $M_{m \times n}(\mathbb{R})$

$$
\begin{array}{r}
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad b_{1}=\left(\begin{array}{c}
b_{1}^{\prime} \\
\vdots \\
b_{n}^{\prime}
\end{array}\right) \\
b_{2}=\left(\begin{array}{c}
b_{1}^{2} \\
\vdots \\
b_{n}^{2}
\end{array}\right)
\end{array}
$$

We define equivalence as

$$
A_{1} x=b_{1} \sim A_{2} x=b_{2}
$$

if the same x solves both eggs

Ex:

$$
\left\{\begin{array}{l}
x+y=1 \\
-x+y=3
\end{array}<\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y}=\binom{1}{3}\right.
$$

Solution: $x=-1, y=2$

$$
\left\{\begin{array}{l}
2 x+2 y=2 \\
-x+y=3
\end{array} \leftrightarrow\left(\begin{array}{rr}
2 & 2 \\
-1 & 1
\end{array}\right)\binom{x}{y}=\binom{2}{3}\right.
$$

Solution: $x=-1, y=2$
Says that multiplication of a line doesn't change solution

$$
\begin{aligned}
&\left\{\begin{array}{l}
x+0 y= \\
0 x+y
\end{array}\right.-1 \\
& 0 x\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{-1}{2} \\
& \longleftrightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{2}{-1}
\end{aligned}
$$

- Geometry

Transform

$$
\begin{aligned}
& x=a \\
& y=b
\end{aligned}
$$

- The 3 row operations
(1) Interchange two sows
(2) Multiplying a sow by a scalar
(3) Adding two rows
(4) Adding a multiple of one sow to another

$$
\begin{array}{ll}
\substack{(0,-1)} & \left\{\begin{array}{l}
x+y=1 \\
x+y=-1
\end{array}\right. \\
\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y}=\binom{1}{-1}
\end{array}
$$

(D) Interchanging rows

(2): Multiplication by a scalar (that isn't
 zero)

Multiply by 2

$$
\begin{gathered}
\left\{\begin{array}{c}
-2 x+2 y=-2 \\
x+y=1 \\
\left(\begin{array}{cc}
-2 & 2 \\
1 & 1
\end{array}\right)\binom{x}{y} \quad\binom{-2}{1}
\end{array} .=\begin{array}{l}
2
\end{array}\right)
\end{gathered}
$$

* Most interesting
(3): Adding two rows

Add blue to red

Given two lines

$$
y=m_{1} x+b_{1}, \quad y=m_{2} x+b_{2}
$$

intersect at (α, β)

$$
B=m_{1} \alpha+b_{1}=m_{2} \alpha+b_{2}
$$

Add lines

$$
\begin{aligned}
y & =m_{1} x+b_{1} \\
+y & =m_{2} x+b_{2} \\
\hline 2 y & =\left(m_{1}+m_{2}\right) x+\left(b_{1}+b_{2}\right) \\
\Rightarrow y & =\frac{1}{2}\left(m_{1}+m_{2}\right) x+\frac{1}{2}\left(b_{1}+b_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(m_{1} x+b_{1}\right)+\frac{1}{2}\left(m_{2} x+b_{2}\right) \\
x=\alpha \quad & \\
& \frac{1}{2}\left(m_{1} \alpha+b_{1}\right)+\frac{1}{2}\left(m_{2} \alpha+b_{2}\right) \\
& =\frac{1}{2} \beta+\frac{1}{2} \beta=\beta
\end{aligned}
$$

* Adding lines preserver intersection.
- Takeaway : solving linear equation r amounts to figuring out what order to do the row operations.
(Reduced)
- Row Echelon Form

A matrix A is in REF if
(a) non-zero rows on top
(b) leading column number increases
(c) leading entries are 1
(d) A column w/ a leading I has only zero entries otlerurise

$$
\left(\begin{array}{lllllll}
0 & 1 & x & 0 & 0 & x & 0 \\
0 & 0 & 0 & 1 & 0 & x & 0 \\
0 & 0 & 0 & 0 & 1 & x & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \in M_{s \times 7}(12)
$$

Ex: $\left(\begin{array}{lllll}0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \in M_{3 \times 5}(\mathbb{1 R})$

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Quiz solution:

$$
\text { (A) }\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(c) $\left[\begin{array}{lll}1 & 0 & 7 \\ 0 & 1 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
(D)

$$
\left(\begin{array}{llll}
0 & 1 & 3 & 0 \\
0 & 0 \\
0 & 0 & 1 & \sqrt{2} \\
0 & 0 & 0 & 0 \\
0 & 1
\end{array}\right)^{\circ} \text { lead col: } 2
$$

ib) \oplus Associative means

$$
a \oplus(b \oplus c)=(a \oplus b) \oplus c
$$

$$
\begin{aligned}
\mid a \oplus(b \oplus c) & = \\
& = \\
& = \\
& = \\
& =(a \oplus b) \oplus(c
\end{aligned}
$$

Say $A, B, C \in M_{4 \times 4}(\mathbb{I R})$

