Lecture 5: 07/01/20

- Vectors (fancy way to think about \mathbb{R}^{n})

Vector: magnitude is direction
we can represent as coordinates = magnitude
(a, b) length by Put. The is

$$
\begin{aligned}
& \frac{1}{\sqrt{a^{2}+b^{2}}}(a, b)
\end{aligned}
$$

y

$$
\begin{aligned}
& V_{1}+V_{2} \\
& \left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right) \\
& =\left(a_{1}+a_{2}, b_{1}+b_{2}\right) \\
& \uparrow
\end{aligned}
$$

since t on \mathbb{R}
is commutatine
vecture t is tou

$$
v_{1}+v_{2}=v_{2}+v_{1}
$$

- Once we have addition and multiplication by - (we get subtraction.

$$
\begin{aligned}
& v_{1}=\left(a_{1}, b_{1}\right), v_{2}=\left(a_{2}, b_{2}\right) \\
& v_{1}-v_{2}=\left(a_{1}-a_{2}, b,-b_{2}\right) \\
& =v_{1}+\left(-v_{2}\right) \\
& v_{1}-v_{2} \neq v_{2}-v_{1}
\end{aligned}
$$

$$
v_{1}-v_{2}=-\left(v_{2}-v_{1}\right)
$$

$$
\left.v_{1}, v_{2} \in \mathbb{R}^{m}, \quad v_{1}-v_{2}=-\left(a_{1}, a_{2}, \ldots, a_{m}\right), v_{2}-v_{1}\right)
$$

Pf: Generalize to higher dimensions
Recall that $\mathbb{R}^{m} \cong M_{1 \times n}(\mathbb{R})$
treat v_{1}, v_{2} as row vectors

$$
\begin{aligned}
v_{1}-v_{2} & =\left(a_{i j}-b_{i j j}\right)_{1 \times n} \\
& =\left(-\left(b_{i j}-a_{i j}\right)\right)_{1 \times n} \\
& =-\left(b_{i j}-a_{i j}\right)_{1 \times n} \\
& =-\left(v_{2}-v_{1}\right)
\end{aligned}
$$

Complex

$$
a=u+i v, i=\sqrt{-1}
$$

$$
\begin{aligned}
\forall & =\text { for all } \\
\exists & =\text { there exists } \\
\cdot 7 \cdot & =\text { such that s.t. } \quad 7 \text {. }
\end{aligned}
$$

- Big idea: Vector Spaces

Def: A vector space is a nonempty set V over a field with two operations

- Addition : closed $\forall u, w \in V$
$U+W \in V \quad W h e n$ we say "over F" we mean mull.
- Scalar Mult: $\forall \alpha \in \mathbb{F} \quad u \in V$ $\alpha u \in V$

Furthermore, V must satisfy the following:
(1) Associtivity: $\forall v, w, z \in V$

$$
(u+w)+z=u+(w+z)
$$

(2) zero: $\exists 0 \in V \cdot \ni \cdot \forall u \in V$

$$
u+0=0+u=u
$$

(3) Negatives: $\forall u \in V, \exists(-u) \in V \cdot \ni \cdot$

$$
u+(-u)=0
$$

(4) Commutative: $\forall v, w \in V$

$$
u+w=w+v
$$

(5) Scalar. Mult. Distributes over Addition

$$
\begin{aligned}
& \forall \alpha \in \mathbb{F}, \quad \forall u, w \in V \\
& \quad \alpha(u+w)=\alpha u+\alpha w
\end{aligned}
$$

(6) $\forall \alpha, \beta \in \mathbb{F}, \forall v \in V$

$$
(\alpha+\beta) v=\alpha v+\beta v
$$

(7) $\forall \alpha, \beta \in \mathbb{F}, \forall u \in V$

$$
(\alpha \beta) u=\alpha(\beta u)
$$

Question: does $(\alpha \beta) u=(\beta \alpha) u$? why or why not?
(8) entity: $\exists \mathbb{1}=1 \in \mathbb{F} \cdot \exists-\forall u \in V$

$$
\mathbb{1} u=l u=u
$$

Think: " $1 R^{m}$ over $1 R^{\prime \prime}$

Vector space has four components

- Nonempty set $V \longleftarrow$ we call there vector
- A field $\mathbb{F} \longleftarrow$ we call these scalars
- An operation t
- An operation x

Claim: The inverse element is unique.
Take aural: We do not know what \mathcal{S} is, 价 is, t is, x is.

Pf: Let $u+a=0, u+b=0$

$$
\begin{gather*}
\text { UTS: } a=b \\
u+a=0=u+b \\
a+(u+a)=a+(u+b) \\
(a+u)+a=(a+u)+b \tag{associativity}
\end{gather*}
$$

$$
\begin{gathered}
0+a=0+b \\
a=b
\end{gathered}
$$

Inverse element in THIS context is (-u) the negative.
pw: civ

- Ex. of vector spaces:
$M_{m \times n}(\mathbb{R})$ over \mathbb{R} is a vector space
t is normal addition, ult is normal scalar matrix moltmatrix zero
(2) $\bar{O}=(0)_{m \times n}$
$\forall \quad A \in M_{m \times n}(1 R)$

$$
\begin{aligned}
\bar{O}+A=\left(0+a_{i j}\right)_{m \times n} & =\left(a_{i j}+0\right)_{m \times n} \\
=A+\bar{O} & =\left(a_{i j}+0\right)_{m \times n} \\
= & \left(a_{i j}\right)_{m \times n}=A
\end{aligned}
$$

- $R([a, b]):$ He space of Riemann integrable function on $[a, b]$.

$$
f \in \mathbb{R}([a, b]) \text { if } \underbrace{\int_{a}^{b} f d x<\infty}_{\text {has to make sense }}
$$

Defined via a limit of partial sum r

$$
\int_{a}^{b} f d x=\lim _{N \rightarrow \infty} \sum_{k=0}^{N-1} f\left(\frac{(b-a) k}{N}+a\right)
$$

$f+g$ is as expected and over $\mathbb{R} \quad \alpha \in \mathbb{R} \Rightarrow \alpha f$

- Closure under $t, f+g \in R$

$$
\begin{aligned}
& \int_{a}^{b} f+g d x=\int_{\text {equality }}^{b} f \underbrace{b}_{\text {makes sense }} d x+\int_{a}^{b} g d x \\
& \Rightarrow f+g \in R \\
& \text { - molt } \int_{a}^{b} d f d x=\alpha \int_{a}^{b} f d x
\end{aligned}
$$

- Homogeneous System of Egs
$A x=b$ is homogeneous if $b=0$ of the form $A x=0$

$$
A \in M_{m_{x n}}(\mathbb{R}), x \in M_{n+1}(\mathbb{R})
$$

Thing to note: if $x, y \in M_{n \times 1}$ (112) Solve $A x=0$, that is $A x=0$ i
$A y=0$, then $x+y$ also solver

$$
A(x+y)=A x+A y=0+0=0
$$

If $A x=0$, then $\forall \alpha \in \mathbb{R}$

$$
A(\alpha x)=\alpha A x=\alpha(A x)=\alpha 0=0
$$

so $d x$ also solver our system.
\rightarrow Makes us think we have a vector space.

Indeed the space of all solutions to a homogeneous eq. is a V.S.

- Subspace

Def: given a v.s. V. A non-empty subset $W,(W \subset V)$ is a subspace if W is itself a vector space. \leftarrow oven IR
$E \times \mathbb{R} \subset \mathbb{R}^{2}$ " \mathbb{R} is a subspace of $\mathbb{R}^{2 "}$ we know RR^{2} is a vector space
\mathbb{R} is a vector space.

$$
\begin{array}{ll}
(a, b) \in \mathbb{R}^{2} \\
(a, 0), & (a, 0) \in \mathbb{R} \\
(a+b, 0) \in \mathbb{R}
\end{array}
$$

Question 2: What def of $+1 x$ maker a quadrant into a vs.?

Thy: Let V be a v.s. and let W be a non-empty subset of V. Then W is a subspace if and only if W is closed under addition of scalar molt.

Pf: W subspace \Rightarrow closed under add. mult. follows from def. of a subspace W closed under add is mult \Rightarrow subspace
(2) zero:

WTS: $\bar{O} \in W, \quad 0+w=w$
what re know
WWk: $\forall u \in V, u+\overline{0}=u$
W is closed under scalar mult.
so... $\forall W \in W, \quad o w=\overline{0}, \Rightarrow \overline{0} \in W$
since $\forall u \in V, u+\overline{0}=U$

$$
w+\bar{o}=w \in w
$$

(3) Negatives

WTS: $\forall w \in W, \exists(-w) \in W=\ni \cdot$

$$
w+(-w)=\overline{0}
$$

WWW: $\forall U \in V, \exists(-u) \in V \cdot \ni$.

$$
v+(-v)=\overline{0}
$$

because $w \in W C V, \exists(-w) \in V \cdot 7$.

$$
w+(-w)=\overline{0}
$$

We also know $(-1) W=(-w)$
and because W closed under molt.
$-W \in W$.
pw: july -4

Quiz 2:

$$
\underset{A}{\binom{a_{1}}{a_{2}}} \underset{B}{\binom{b_{1}}{b_{2}}}=\binom{a_{1}+b_{2}}{a_{2}+b_{1}}
$$

Associtive

$$
\begin{aligned}
& (A \oplus B) \oplus C=A \oplus(B \oplus C) \\
& \text { let } C=\binom{c_{1}}{c_{2}} \\
& A \oplus B=\binom{a_{1}+b_{2}}{a_{2}+b_{1}} \\
& (A \oplus B) \oplus C=\binom{a_{1}+b_{2}+c_{2}}{a_{2}+b_{1}+c_{1}} \\
& (B \oplus C)=\binom{b_{1}+c_{2}}{b_{2}+c_{1}} \\
& \left(\oplus\binom{a_{1}+b_{2}+c_{1}}{a_{2}+b_{1}+c_{2}}\right.
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
-1 & k & 1 \\
1 & 1
\end{array}\right) \quad R_{2}=R_{2}+R_{1} \quad\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 2+k & 15
\end{array}\right)
$$

want $k \cdot \ni$.

$$
\begin{aligned}
& 2+k=0 \\
& k=-2
\end{aligned}
$$

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & 2 & 1 & 3 \\
0 & 0 & 1 & 5
\end{array}\right) \Rightarrow \text { no sol } \\
\left(\begin{array}{llll}
1 & 0 & b & 1 \\
0 & 1 & c & 1 \\
0 & 0 & k+\frac{a}{2} & 1 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

determinant
$A \in M_{m \times m}(\mathbb{R})$
get A.
some t
If $\operatorname{det} A=0$, then there is no solution

Rule: tells how to get $\#$ for

$$
\begin{aligned}
& A \in M_{3 \times 3}(1 \Omega)^{0} \\
& k+a=\operatorname{det} A=0
\end{aligned}
$$

