> Answer all questions in a clear and concise manner. Show all work. Submit one page per problem on Gradescope, properly select the subproblems and indicate if the solution requires multiple pages.
> You may consult the internet, book, and peers. Cite any sources other than the book that you used. Citing Stack Exchange/Stack Overflow and/or Chegg is -.5 points per citation (subject to caveats discussed in lecture). If you are suspected of using an online resource without citation you will receive zero points for that problem.
> If you work with peers, include the names of all in your group and do your own write-up independently, you should understand the solutions you are including in your write up. Copying on problems will result in zero points on that section.

1. A square matrix $A \in \mathcal{M}_{m \times m}(\boldsymbol{R})$ is called upper triangular if $a_{i j}=0$ whenever $j>i$. For example

$$
\left(\begin{array}{ccc}
1 & 8 & -7 \\
0 & 4 & 6 \\
0 & 0 & -3
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\boldsymbol{R})
$$

is upper triangular.
Let $A \in \mathcal{M}_{m \times m}(\boldsymbol{R})$ and suppose that for all $1 \leqslant i \leqslant m, a_{i i} \neq 0$.
(a) (2 points) Prove that the columns, regarded as column vectors, are linearly independent.
(b) (2 points) Do the columns span \boldsymbol{R}^{m} ?
2. (3 points) Let V be an n-dimensional vector space, and $W \subset V$ a subspace of V. Prove that $\operatorname{dim} W=n$ if and only if $W=V$; that is every element of V is also in W.

