> Answer all questions in a clear and concise manner. Show all work. Submit one page per problem on Gradescope, properly select the subproblems and indicate if the solution requires multiple pages.
> You may consult the internet, book, and peers. Cite any sources other than the book that you used. Citing Stack Exchange/Stack Overflow and/or Chegg is -.5 points per citation (subject to caveats discussed in lecture). If you are suspected of using an online resource without citation you will receive zero points for that problem.
> If you work with peers, include the names of all in your group and do your own write-up independently, you should understand the solutions you are including in your write up. Copying on problems will result in zero points on that section.

1. Let $A, B \in \mathcal{M}_{d \times d}(\boldsymbol{R})$, and let $A$ be invertible. Prove or disprove the following
(a) $(1$ point $) \operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(A^{2}\right)$.
(b) $(1$ point $) \operatorname{det}\left(A^{-1} B A\right)=\operatorname{det} B$.
(c) (1 point) $\operatorname{det}\left(\sum_{k=1}^{N} A_{k}\right)=\sum_{k=1}^{N} \operatorname{det} A_{k}$, for $A_{k} \in \mathcal{M}_{d \times d}(\boldsymbol{R}), k=1,2, \cdots, N$.
(d) $(1$ point $) \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
2. (2 points) A matrix $A \in \mathcal{M}_{m \times m}(\boldsymbol{R})$ is skew symmetric if $a_{i j}=-a_{j i}$ for all $i, j$. Prove that if $m$ is odd, $\operatorname{det} A=0$.
