Answer all questions in a clear and concise manner. Label all work. Questions must be clearly labeled and in order. Exact answers only. No calculators. Show all work. Each question must be on a separate sheet of paper, only turn in questions to be graded. There are 8 problems, numbered 1-8. The test is scored out of 33 points.

1. (5 points) For what values of b does B^{-1} exist, given that

$$
B=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & b & 1 \\
b & 1 & 2 b
\end{array}\right)
$$

(Do not use a determinant).
2. (3 points) Let $C^{1}(\boldsymbol{R})$ denote the space of continuously differentiable functions on \boldsymbol{R} (that is $f \in C^{0}(\boldsymbol{R})$ and we can differentiate f at all $x \in \boldsymbol{R}$, and $\left.f^{\prime} \in C^{0}(\boldsymbol{R})\right)$. Prove or disprove that $C^{1}(\boldsymbol{R})$ is a vector space. (You may use the fact that if $f, g \in C^{1}(\boldsymbol{R})$, then αf and $f+g$ are in $C^{1}(\boldsymbol{R})$ for any $\alpha \in \boldsymbol{R}$)
3. Let $A, B \in \mathcal{M}_{2 \times 2}(\boldsymbol{R})$ and define \oplus by

$$
A \oplus B=\left(\begin{array}{ll}
a_{11}+b_{22} & a_{12}-b_{21} \\
a_{21}-b_{12} & a_{22}+b_{11}
\end{array}\right)
$$

Answer the following and explain your answers.
(a) (1 point) If a zero element exists under this operation what is it?
(b) (1 point) If negatives exist what is the negative under this operation (I.e. given A, is there a B such that $A \oplus B=0)$?
(c) (1 point) Is \oplus commutative?
(d) (2 points) Is \oplus associative?
(e) (1 point) Does scalar multiplcation distribute over \oplus (vector space rule 5)?
4. (2 points) A square matrix $A \in \mathcal{M}_{m \times m}(\boldsymbol{R})$ is called lower triangular if $a_{i j}=0$ whenever $j<i$. For example

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 4 & 0 \\
-5 & 8 & -3
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\boldsymbol{R})
$$

is upper triangular.
Given that $\mathcal{M}_{3 \times 3}(\boldsymbol{R})$ is a vector space under addition and scalar multiplication, show that the space of lower triangular matrices is a subspace of $\mathcal{M}_{3 \times 3}(\boldsymbol{R})$ (Hint: you don't need to prove all the properties).
5. (5 points) Determine whether the following set is linearly independent or linearly dependent. If the set is linearly dependent give a linearly independent subset and justify your answer.

$$
S=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
1 & 1 \\
-1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
1 & 1 \\
-2 & 3
\end{array}\right)\right\} \subset \mathcal{M}_{3 \times 2}(\boldsymbol{R})
$$

6. Given that

$$
S=\{(1,0,1,2),(0,1,0,0),(0,0,1,1)\}
$$

(a) (2 points) Show the set is linearly independent.
(b) (2 points) Add a single vector to S to form a base of \boldsymbol{R}^{4}. Justify your answer.
7. (4 points) Find a base other than $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ for the space $\mathcal{M}_{2 \times 2}(\boldsymbol{R})$ and justify your answer.
8. Let $A \in \mathcal{M}_{2 \times 2}(\boldsymbol{R})$.
(a) (2 points) Find the general form of $\left(A^{T}\right)^{-1}$ and provide a condition which allows us to take the inverse of the transpose.
(b) (1 point) If A is invertible, does this mean A^{T} is invertible? Explain your answer.
(c) (1 point) Provide a formula for $\left(A^{T}\right)^{-1}$ in terms of A, A^{T} and A^{-1}.

1. (5 points) For what values of b does B^{-1} exist, given that

$$
B=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & b & 1 \\
b & 1 & 2 b
\end{array}\right)
$$

(Do not use a determinant).
2. (3 points) Let $C^{1}(\boldsymbol{R})$ denote the space of continuously differentiable functions on \boldsymbol{R} (that is $f \in C^{0}(\boldsymbol{R})$ and we can differentiate f at all $x \in \boldsymbol{R}$, and $\left.f^{\prime} \in C^{0}(\boldsymbol{R})\right)$. Prove or disprove that $C^{1}(\boldsymbol{R})$ is a vector space. (You may use the fact that if $f, g \in C^{1}(\boldsymbol{R})$, then αf and $f+g$ are in $C^{1}(\boldsymbol{R})$ for any $\alpha \in \boldsymbol{R}$)
3. Let $A, B \in \mathcal{M}_{2 \times 2}(\boldsymbol{R})$ and define \oplus by

$$
A \oplus B=\left(\begin{array}{ll}
a_{11}+b_{22} & a_{12}-b_{21} \\
a_{21}-b_{12} & a_{22}+b_{11}
\end{array}\right)
$$

Answer the following and explain your answers.
(a) (1 point) If a zero element exists under this operation what is it?
(b) (1 point) If negatives exist what is the negative under this operation (I.e. given A, is there a B such that $A \oplus B=0)$?
(c) (1 point) Is \oplus commutative?
(d) (2 points) Is \oplus associative?
(e) (1 point) Does scalar multiplication distribute over \oplus (vector space rule 5)?
4. (2 points) A square matrix $A \in \mathcal{M}_{m \times m}(\boldsymbol{R})$ is called lower triangular if $a_{i j}=0$ whenever $j<i$. For example

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 & 4 & 0 \\
-5 & 8 & -3
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\boldsymbol{R})
$$

is upper triangular.
Given that $\mathcal{M}_{3 \times 3}(\boldsymbol{R})$ is a vector space under addition and scalar multiplication, show that the space of lower triangular matrices is a subspace of $\mathcal{M}_{3 \times 3}(\boldsymbol{R})$ (Hint: you don't need to prove all the properties).
5. (5 points) Determine whether the following set is linearly independent or linearly dependent. If the set is linearly dependent give a linearly independent subset and justify your answer.

$$
S=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
1 & 1 \\
-1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
1 & 1 \\
-2 & 3
\end{array}\right)\right\} \subset \mathcal{M}_{3 \times 2}(\boldsymbol{R})
$$

6. Given that

$$
S=\{(1,0,1,2),(0,1,0,0),(0,0,1,1)\}
$$

(a) (2 points) Show the set is linearly independent.
(b) (2 points) Add a single vector to S to form a base of \boldsymbol{R}^{4}. Justify your answer.
7. (4 points) Find a base other than $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ for the space $\mathcal{M}_{2 \times 2}(\boldsymbol{R})$ and justify your answer.
8. Let $A \in \mathcal{M}_{2 \times 2}(\boldsymbol{R})$.
(a) (2 points) Find the general form of $\left(A^{T}\right)^{-1}$ and provide a condition which allows us to take the inverse of the transpose.
(b) (1 point) If A is invertible, does this mean A^{T} is invertible? Explain your answer.
(c) (1 point) Provide a formula for $\left(A^{T}\right)^{-1}$ in terms of A, A^{T} and A^{-1}.

