Practice Final Solutions:

2

$$
\begin{aligned}
& \operatorname{det}(\alpha A) \\
& \quad=\sum_{\pi \in S_{m}} \sigma(\pi)\left(\alpha a_{1 \pi_{1}}\right) \cdots\left(\alpha a_{m \pi_{m}}\right) \\
& =\alpha^{m} \sum_{\pi \in S_{m}} \sigma(\pi) a_{1 \pi_{1}} \cdots a_{m \pi_{m}} \\
& =\alpha^{m} \operatorname{det}(A)
\end{aligned}
$$

Ba)

$$
\begin{aligned}
1 & =\operatorname{det}(I) \\
& =\operatorname{det}\left(A A^{-1}\right) \\
& =\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right) \\
& =\operatorname{det}(A) \operatorname{det}\left(A^{\top}\right) \\
& =(\operatorname{det}(A))^{2} \Rightarrow \operatorname{det}(A)= \pm 1
\end{aligned}
$$

36) Elements of Sta are "volume preserving" since their determinant has $\operatorname{det} A=c$

For example any rotation is in SLum. also volume preserving shears.
We cant have reflections since in this case the determinant is negative.
No stretching since non unity deft.
3c) Product of eigenvalues must be 1.
4)

$$
\begin{aligned}
& A B=-B A \\
& \operatorname{det}(A B)=\operatorname{det}(-B A) \\
&=(-1)^{m} \operatorname{det}(B A) \\
&=-\operatorname{det}(B) \operatorname{det}(A) m \operatorname{odd} \\
&=-\operatorname{det}(A B)
\end{aligned}
$$

so $\operatorname{det}(A B)=0$ and either

$$
\operatorname{det}(A)=0 \text { or } \operatorname{det}(B)=0
$$

(or both) hence, at least one isnit inv.
7) Given

Cofactor expansion along first column shows
$\operatorname{det}(A-\lambda I)$

$$
=\left(a_{11}-\lambda\right)\left|\begin{array}{ccc}
a_{22}-\lambda & a_{23} & \cdots \\
0 & a_{33}-\lambda & \\
0 & \vdots & a_{m m-\lambda}
\end{array}\right|
$$

upper triangular

Repeat doing cofactor expansions to reach

$$
\operatorname{det}(A-\lambda I)=\prod_{k=1}^{m}\left(\prod_{m m}-\lambda\right)
$$

So e.v. are $a_{11}, a_{22}, \ldots, a_{m m}$

Ba) $\left(\begin{array}{cccc}\sqrt{\lambda_{1}} & 0 & & \\ 0 & \sqrt{\lambda_{2}} & & \\ & & \ddots & 0 \\ & & 0 & \sqrt{\lambda_{m}}\end{array}\right)^{2}$

$$
=\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{m}
\end{array}\right)
$$

Bb) We have $A=P D P^{-1}$
and $\left(P \sqrt{D} P^{-1}\right)^{2}$

$$
\begin{aligned}
& =P \sqrt{D} D^{-1} P \sqrt{D} P^{-1} \\
& =P \sqrt{D} I \sqrt{D} P^{-1} \\
& =P \sqrt{D} \sqrt{D} P^{-1} \\
& =P D P^{-1}=A
\end{aligned}
$$

so $P \sqrt{D} P^{-1}$ is a sq. root of A.

Bc) Diagonalization (as in class) gives

$$
\begin{gathered}
\left(\begin{array}{cc}
6 & -2 \\
-3 & 7
\end{array}\right) \\
=\left(\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
4 & 0 \\
0 & 9
\end{array}\right)\left(\begin{array}{cc}
3 / 5 & 2 / 5 \\
-1 / 5 & 1 / 5
\end{array}\right) \\
D \\
\Rightarrow \sqrt{D}=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)
\end{gathered}
$$

so by (b)

$$
\left.\begin{array}{c}
\left(\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right)
\end{array}\left(\begin{array}{cc}
2 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
3 / 5 & 2 / 5 \\
-1 / 5 & 1 / 5
\end{array}\right)\right] \text { (1 }\left(\begin{array}{cc}
12 & -2 \\
-3 & 13
\end{array}\right)
$$

is a square root of A

8d) No, consider

$$
A=\left(\begin{array}{ll}
4 & 0 \\
0 & 9
\end{array}\right) \text {, then }\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \text { is }
$$

a square coot, but so is

$$
\left(\begin{array}{cc}
-2 & 0 \\
0 & -3
\end{array}\right)
$$

9. Put J^{\top} into JNF to get

$$
J^{\top}=S^{-1} M S
$$

We must show $M=J$, since

$$
J=I J I
$$

is in JNF.
We know J, J^{\top} have same eigenvalues $w /$ same algebraic multiplicities.

$$
(H W 5)
$$

We must show that each λ_{k} has the same geometric multiplicity.
The geometric multiplicity is the dimension of the nullspace of $J-\lambda_{k} I$
Note that $\left(J-\lambda_{k} I\right)^{\top}=J^{\top}-\lambda_{k} I$ (check this)

So $J-\lambda_{k} I$ and $J^{\top}-\lambda_{k} I$ have the same rank, and hence by rank -nullity they have the same dimension nulfspace \Rightarrow same geometric molt.

Same eigenvalues + same geo. molt \Rightarrow same JNF
10) As in 9 , must show A \& A^{\top} have same eigenvalues w/same alg is geo mull.
Recall that $\operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right)$ and note that $(A-\lambda I)^{\top}=A^{\top}-\lambda I *$ check this?

So that $\operatorname{det}(A-\lambda I)$

$$
\begin{aligned}
& =\operatorname{det}\left((A-\lambda I)^{\top}\right) \\
& =\operatorname{det}\left(A^{\top}-\lambda I\right)
\end{aligned}
$$

So A, A^{\top} have same eigenvalues w/ same alg mull.
Recall that $\operatorname{dim}(N(A-\lambda I))=$ geo mut, By row-column rank equiv (s-B: pg 151) $\operatorname{Rank}(A)=\operatorname{Rank}\left(A^{\tau}\right)$ and by rank nullity

$$
\operatorname{dim}\left(N\left(A-\lambda_{k} I\right)\right)=\operatorname{dim}\left(N\left(A^{\top}-\lambda_{k} I\right)\right)
$$

and hence λ_{k} has same geo molt for A is A^{\top}.

Finally, same eigenvalues wo /same alg iq geo molt \Rightarrow same JNF

Note that 9 is a special case of 10 .
11) Only true for 2×2, your classmate Allie Bailly presented the following counter-example for 3×3

$$
\begin{gathered}
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
A^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), A^{3}=0
\end{gathered}
$$

For 2×2, either A is diagonalizable or it isn't. If diagonalizable, then

$$
\begin{aligned}
& A=P^{-1}\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) P \\
& A^{3}=P^{-1}\left(\begin{array}{cc}
\lambda_{1}^{3} & 0 \\
0 & \lambda_{2}^{3}
\end{array}\right) P=0 \\
& \Rightarrow \lambda_{1}=\lambda_{2}=0 \\
& \Rightarrow A=0
\end{aligned}
$$

If not, we get a Jordan Block

$$
A=P^{-1}\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) P
$$

and

$$
\begin{gathered}
A^{2}=P^{-1}\left(\begin{array}{cc}
\lambda^{2} & 2 \lambda \\
0 & \lambda^{2}
\end{array}\right) P=0 \\
\Rightarrow \lambda=0 \\
\Rightarrow A^{3}=0
\end{gathered}
$$

