Problem 1 Consider a rigid, flat object, of mass m and length ¢, attached to a torsional spring of
stiffness « in the presence of wind of speed v (see Fig. 1). The equations of motion are

mé? d*0 2

T -0+ ves sin(0)

where ¢ is a drag constant so that vc has units of force. Assume that all constants listed
above are positive (but keep in mind that 6(f) may be negative).
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Figure 1:

(a) Use non-dimensionalization to show that the qualitative behavior of the system is defined
by a single non-dimensional parameter.

(b) Show that there is a conserved quantity.

(c) As wind speed v increases from 0, find a critical value of the non-dimensional parameter
at which a bifurcation occurs, and identify the type of bifurcation.

(d) Sketch the phase portrait at i. a wind speed just below the bifurcation and ii. a wind speed
Jjust after the bifurcation.

Problem 2 Consider the following predator-prey model:

dx _ dy B
E—x(x(l x)—y) dt—y(x a)

where x is the (positive) non-dimensional population of prey, y is the (positive) non-dimensional
population of predators, and a is a (positive) non-dimensional parameter.

(a) Sketch the null-clines in the first quadrant, x, y = 0.

(b) Find and classify all fixed points

(¢) Find and classify all bifurcations that occur as a varies (assume a > 0).
(d) Show that a stable limit cycle exists for some values of a.



Problem 3 An annular plate with inner and outer radii a < b, respectively, is held at temperature

B at its outer boundary and satisfies the boundary condition P A at its inner boundary,
r

where A, B are constants. Find the temperature if it is at a steady state.

[ Hint: It satisfies the two-dimensional Laplace equation and depends only on r. You can

also use the fact that the Laplace operator can be expressed in the polar coordinate (r,0) as:
0 L1 1 0°
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Problem 4 Let w be positive, but not an integer multiple of 7 and consider the following boundary
value problem on the unit interval [0, 1]:

ff+0’f=g, flO=0=f.

(a) Find the Green’s function for this boundary value problem.

(b) Discuss what happens if we try this with w =07?



Problem 5 Let A be a symmetric matrix and let 1y be a simple (i.e. multiplicity one) eigenvalue
of A with corresponding eigenvector vy. Derive an expression for the eigenvalue, A, up to
order € in the limit of small € to the problem

Av+eF(v) = Av

that is Ay at leading order.

Problem 6 The van der Pol oscillator,

exhibits periodic relaxation oscillations. The oscillation exhibits two time scales (a fast and
slow time scale) for small €.

Let f(u) = u®/3 — u. The following information about f may be helpful:

fl=D =0
f(*x1)=%2/3
f(+2)=+2/3

(a) Draw the nullclines in the phase plane (uv-plane), sketch the the limit cycle for small
€, and label the regions of fast and slow dynamics on the limit cycle.

(b) Compute the period of the oscillation at leading order as € — 0.

End of the exam.



Problem 1 Consider the oscillator equation
X+F(x,x)x+x=0,

where F(x,%) <0if r <a and F(x, %) > 0 if r = b with 2 = x® + %% and a < b. Show that
there is at least one closed orbit in the region a < r < b.

Problem 2 Consider the system of ordinary differential equations

@—x(x—z )
dr y
dy

L —y2x -
dt y@2x-y)

(a) Show that (x, y) = (0,0) is the unique fixed point of the system.

(b) Use linear stability analysis to classify the fixed point at (x, y) = (0,0). What can you
conclude about the stability of (0,0) based on this analysis?

(c) Sketch the phase portrait of the system and describe the stability of (x, y) = (0,0).



Problem 3 Suppose you are given a string of length L. Suppose you arrange it to lie along a func-
tion, f(x), where f(0) = 0. Of all possible potential arrangements of the string, which one
maximizes the volume enclosed by it, V, when it is rotated about the x-axis?

DO NOT look for a closed form solution. Instead, leave your answer as a differential equa-
tion, boundary conditions, and a sufficient number of constraint equations to allow a clever
person with a computer to find a solution.

Problem 4 A plucked string, fixed at both ends, obeys the differential equation
_ 2
U =C Uxx — AUy
with boundary conditions u(0,#) = u(L,t) = 0, and initial conditions u(x,0) = f(x) and
u;(x,0) = 0. In these equations, u is the local displacement of the string at position x, and

c is a constant (¢ is time). When the constant a is zero, this is the wave equation; here, you
will examine the effect of a > 0.

(a) Write the solution to the differential equation.
(b) What happens to the solution as t — co?.

(c) Give a possible physical interpretation of the term au;.



Problem 5 Consider projectile motion with air resistance. The (dimensional) ODE for x(t), the

height of the object is
dzx:_ gR? _ k dx 0
dr>  (x+R? x+Rdt’
where g is the gravitational constant, R is the radius of the earth, and k is a non-negative
constant related to the air resistence. Suppose an object is launched from the surface (x(0) =

0) at a low velocity % o™ Vg (with v small).

1. Non-dimensionalize Equation (1) by finding appropriate re-scalings of x and ¢ and
define (two) small parameters in terms of your scaling choices. [HINT: Your choice
of scaling should give the familiar physical problem valid when the initial velocity or
displacement is much smaller than R and air resistance is negligible.]

2. Using the non-dimensionalized equations, find the leading order asymptotic expansion
for the solution. [HINT: Your expansion should be in orders of the small parameter you
defined above that is independent of the air-resistance parameter k.|

3. What equation would you need to solve to find the solution to the next highest order in
the small parameter, include initial conditions, but DO NOT solve the equation.

Problem 6 Determine the first terms in the inner and outer expansions for the following boundary
value problem:
ey'—2x+1)y +2y=0

with y(0) =1, y(1) =0, and € < 1. Construct a first-order uniformly valid expansion for y(x).

End of the exam.



Problem 1 Suppose a bead, of mass m, slides frictionlessly on a hoop of radius R. If we then
spin the hoop at constant angular velocity w about an axis parallel to the force of gravity (see
Fig. 1), the bead obeys the following non-linear second order differential equation
’ g
Tz w?sin(@) cos () + 7 sin(@) =0
where g is the acceleration of gravity, 0(t) is the bead’s angular position on the hoop (with
0 = 0 being at the bottom), and ¢ is time.

hoop

bead

Figure 1:

a) Use non-dimensionalization to show that the qualitative behavior of the system is defined
by a single non-dimensional parameter.

b) Find all fixed points, determine their stability and classify them as a function of that
parameter.

¢) Sketch a bifurcation plot (i.e., sketch the fixed points as a function of the parameter,
indicate the stability of the fixed points, and label any bifurcations that occur). Use the
Lyapunov definition of stability for this part.

It may or may not be useful to know that the energy of the system can be written as

2
E= mg(R—Rcos(e)H%(stinz(9)+R2 (%) )

The Lyapunov definition of stability is that a fixed point is stable if all trajectories starting
sufficiently close to the fixed point remain within an arbitrarily small distance of the fixed
point.



Problem 2 A solid box, with sides of unequal length, obeys Euler’s equations when tossed in the
air:
Iw+wxIw=0

where, for simplicity, we neglect gravity. In this equation, I is the inertia tensor (defined
below) and w is the angular velocity vector.

C
: O‘)’r)&<4 /: !
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Figure 2:

For the box above (Fig. 2), with length a, height b, and width c, the inertia tensor (in Carte-
sian coordinates) is

2(a*+b%) 0 0
I= 0 2+ b?) 0
0 0 (@ +c?)

and the corresponding angular velocity vector is

Wx
()

For the following, assume a > ¢ > b, and ||w|| = 1.

a) Find all fixed point(s).

b) Use linear stability analysis to classify the fixed point(s), i.e., stable node, unstable node,
center, stable spiral, unstable spiral, saddle.



Problem 3 Find a planar curve (x, y) = (x(t), y(¢)) that minimizes the following functional:

1 2, o2
I:f m(x Y —gy)dt,
0 2

where m, g are positive constants, (x(0), y(0)) = (0,0), and (x(1), y(1)) = (a,0).

[ Physically, this is a problem to find a trajectory of a projectile of mass m that starts at (0,0)
and hits at (a,0) at time ¢ = 1 under gravity. |

Problem 4 Consider the Regular Sturm-Liouville Problem on the unit interval [0, 1]:

2
a7 +Af=0, f(0)=0,f(1)+f(1)=0.

d x?

a) Find the eigenvalues and eigenfunctions of this RSL system.

[ Hint: Those eigenvalues are the solutions of some transcendental (also known as secular)
equation. |

b) Expand the constant function 1 on [0, 1] into the series of the eigenfunctions obtained in
Part (a).



Problem 5 The modified Bessel function I,,(x) for n an integer has the integral representation
1 T
I,(x) = —f exp (xcosB) cos(nh) do.
T Jo

Find the leading order asymptotic expansion for I, (x) as x — co. You may find the following
integrals useful:

o0 T o0
f exp(—ax?)dx = \/ = a>0; I'(x) :f *le7tds.
oo a 0

Problem 6
a) Show that the all of the solutions to
i+ u+eu’ =0, €=0

are periodic in time.

[ Hint: One could show that all nontrivial trajectories in the phase plane are closed
curves. |

b) For € = 0, the period of the oscillation is 2. Find the leading e-dependent correction
to the period in the limit of of small € for solutions that pass through the point

u(to) = A, ul(t)(0) =0,

where t = fy is some time.

End of the exam.



Problem 1 Consider the following system:

Step 1: Take a sheet of paper and hold it in a “U” shape.
Step 2: Place a pen or pencil near the bottom of the “U”, but slightly off to one side.
Step 3: Let go, and watch the pen or pencil move back and forth.

Here’s a sketch of the set-up.

Three-quarters view “End on” view

Paper / Paper

Pen
Pen

When you do this experiment, the horizontal position of the pen (x in the sketch on the right)
is a function of time ¢, and obeys the following equation (assuming conservation of energy)

PP CO R €0
all+ f'(x)) 20+ f'(x)

(x)? (1)

where f(x) is a function that gives the height of the paper (in m) as a function of x (you may
assume it and all of its derivatives are continuous), and a is a constant with units of s%/m.
Note that the dot indicates a time derivative and prime indicates a derivative with respect to
x, which is measured in m.

a) Find all fixed points and determine their stability (your answer should depend on a, f(x)
and/or its derivatives). Note, for this question, use the Lyapunov definition of stability, where
a fixed point is stable if trajectories that start sufficiently close (but not exactly at) the fixed
point remain within some small neighborhood of the fixed point. You may assume that there
is no point at which f'(x) = f"(x) = 0.

b) You might expect that the pen will oscillate about a stable fixed point. Find the period of
this oscillation (your answer should depend on a, f(x) and/or its derivatives). Your answer
should include units.



Problem 2 Suppose you are studying the interaction of two proteins. The concentration of the
first protein is p(f) and the concentration of the second protein is w(f). They interact via the
following equations:

pZ

p
K§+p2

p —kwp

w —kw

YK, wtw p
In each equation, the first term models the formation of protein, and the second term models
the breakdown of the protein. Concentration is measured in units of number per liter and
time is measured in seconds. The constants K, and K, then have units of concentration;
the constants A, and A,, have units of concentration per second; and k has units of inverse

concentration per second.

a) Suppose that you know K,/ K, = € (where € is a small number), A,/ (Krz) k) = a/e (where
a is of order 1) and A,/ (K,% k) = B (where B is of order 1). Non-dimensionalize the equa-
tions and write them in terms of the appropriate non-dimensional variables and the non-
dimensional constants ¢, @ and S.

b) Simplify the equations by expanding in € and neglecting all terms of order €.

c) Identify all fixed points and determine their stability. Discuss any bifurcations that may
occur.

d) Sketch a phase portrait of the system. On your plot, be sure to (1) identify and classify
all fixed points, (2) draw all null clines, (3) indicate the qualitative flow direction, and (4)
sketch a few sample trajectories.



Problem 3 Let L be the differential operator
Lu=(1+x*)u"-2xu 0<x<l1

with boundary conditions Bu = 0 given by u/(0) =0, u'(1) = 0.
(a) Find the adjoint L* of L in L2(0,1) and the adjoint boundary conditions B*u = 0.

(b) What are the solutions of the homogeneous boundary value problem Lu =0, Bu = 0?
What is the dimension of the null space?

(c) What are the solutions of the homogeneous adjoint boundary value problem L*u = 0,
B*u =0? What is the dimension of the null space?

Problem 4 (a) Let Q = {(x,y) € R%:—a<x<a, 0< ¥y < b} be a rectangle. Use separation of vari-
ables to solve the boundary value problem
Ugx+Uyy =0 (x,y) €Q
u(x,00=0, ulx,bh=e",
ux(—a,y) =0, uy(a,y)=0.

(b) What is a physical interpretation of this problem? What is the approximate limiting
behavior of the solution as b — 0?



Problem 5

The equation for displacement, g(x), of a nonlinear beam, on an elastic foundation and with an
additional small forcing, is

q//// —KC[N + 026/ =esin(rx), for0<x<1,

K= 1fl( Y2 dx
- 4 0 qx i)
q0)=4q"0)=q1)=q"1)=0,

where c is a positive constant. Find a two-term expansion of the solution for small €.

Problem 6 The dimensionless equation of motion of a frictionless pendulum is
dZ
— +sinf =0.
dt?

In the limit of small amplitude (e.g. denote the amplitude of the 6 as €), the period is 27 to
leading order. Compute the next term in the expansion of the period for small amplitude.

End of the exam.



Problem 1 Consider the system of ordinary differential equations

dx 9 9
E:x(l—x -y)-2y(1+x)
d
d—J;:y(l—xZ—y2)+2x(1+x).

(a) Use the function V(x,y) = (1—x%—y?)? like a Lyapunov function to prove the existence
of an asymptotically stable closed orbit.

(b) Is the asymptotically stable closed orbit a limit cycle? Briefly justify your answer.

Problem 2 Consider the system of ordinary differential equations

dx

ar 7Y

d
d—Jt/:Za:x—y—,B

with the parameters «, > 0.

(a) Find and classify all bifurcations of steady states that occur in the system. (That is,
identify all saddle-node, pitchfork, transcritical, and/or Hopf bifurcations. For any pitchfork
or Hopf bifurcations, you do NOT have to determine whether they are super- or sub-critical).

(b) Plot the stability diagram (i.e., two-parameter bifurcation diagram) for the system in
the a, B-plane. A codimension-2 bifurcation called a Taken-Bogdonov bifurcation occurs at
a=1/2,8=1/4. Very briefly describe what happens at this point.



Problem 3 Suppose you are given a string of length L. Of all possible potential arrangements of
the string, which one maximizes the area enclosed by it, A?

Assume (1) that the shape of the string is symmetric; and
(2) that half of the string (of length L/2) can be described by the function f(x), defined for
a < x < b, such that fff(x)dx = A/2.

Problem 4 A uniform, isotropic, linear-elastic beam of length L, subject to small transverse dis-
placements has action £,
<L = f u +— u ) dx,

where u is the local displacement at position x along the beam, and a is a constant (£ is time,
and the equation is non-dimensionalized).

(a) Derive a partial differential equation for the function, u(x, t), that minimizes the action
Z.

(b) Suppose that the beam is fixed at one end (u(0, t) = 0), and free at the other (uy(L, ) = 0).
Solve the PDE you derived in part (a) for arbitrary initial displacement (u(x,0) = f(x)) and

zero initial velocity (u;(x,0) = 0).

(¢) Find the solution for the case where the beam is struck at the free end (u,(x,0) =
b-6(x— L), where b is an arbitrary positive constant, and 6 (x) is the Dirac delta function).

Note, it may be useful to recall the property f: fx)oé(x—cdx= f(c),ifa<c<b.



Problem 5 Use the WKB method to find an approximate solution to the following problem

y(0)=0

{ ey'+2y' +2y=0
y=1

HINT: Assume y(x) = g(x) f (x) for some function g(x) (that you must determine) to put the
equation into the standard WKB form, namely f”(x) — g(x) f(x) = 0.

Problem 6 Assuming A > 1, derive an approximation to the integral
2 6
I = f 1 +xHe ™ dx.
-1

HINT: You may write your approximation in terms of the Gamma function

I'(z) :f x* e *dx.
0

End of the exam.



Applied Mathematics Preliminary Exam
(Spring 2016)

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will
not receive credit. State results and theorems you are using.

2. Use separate sheets for the solution of each problem.

Problem 1 Consider the one-dimensional dynamical system

dx 9 3
— =ux-—-2x“+x
ar M

where u € R is a parameter and x(¢) € R.
(a) Determine the equilibria of the system and for what ranges of u they exist.
(b) Determine the stability of the equilibria in (a).

(c) Sketch the bifurcation diagram for this system, using a solid line to denote a branch of
stable equilibria and a dashed line to denote a branch of unstable equilibria. Classify the
bifurcations that occur as u increases from —oo to oo.

Problem 2 (a) Show that the second order ODE

@+(@)2+x—0
dr2  \dt B

can be put in the Hamiltonian form

dx OH dp  O0H

— = =—— 1
dt O0p dat 0x 1
by defining
dx
p= esz.

What is H(x, p)?

(b) Sketch the phase plane of the resulting Hamiltonian system (1).



Problem 3 Suppose a perfectly flexible rope of length 2a with uniform density p hangs under
gravity from two fixed points (—b,0) and (b,0) in the xy-plane where b < a and the gravity
points downward (i.e., the negative y direction). Find the shape of this rope, y = y(x), that

minimizes the potential energy
b
V= f \/1+(y)2dx.
Pg L y y

[ Hint: The constraint is of course the arclength of the rope must be 2a. ]

Problem 4 Let f(0) be the 2m-periodic function such that f(@) = e’ for —m < 0 < 7, and let

Z c,e" be its Fourier series; thus e’ Z cne™ for 0] < 7.
n=—oo n=—oo

(a) Compute c,, n € Z, explicitly.
(b) If we formally differentiate this equation, we obtain e’ Z inc,e e But then, ¢, =incy

n=—oo
or (1-in)c, =0, so ¢, =0 for all n. This is obviously wrong; where is the mistake?



Problem 5 Find a one-term approximation, that is valid for long time scales, of the solution to the
following differential equation

edzx +£dx + x = cos(t)
> “dr T

=0.

for t > 0, with initial conditions x(0) = 0 and % -0

2,

- L

Figure 1: This is a numerical solution of the equation with € = 0.01 (gray), plotted with my solution
for the one term approximation, valid for long time scales (black).

Problem 6 Friedrichs’ (1942) model problem for a boundary layer in a viscous fluid is

d*y dy
a2 ax

forO<x<1and y(0)=0,y(1) =1, and a is a given positive constant.

After finding the first term of the inner and outer expansions, derive a composite expansion
for the solution to this problem.



Problem 1 The SIR model is a simple and sometimes accurate way to describe the spread of a
disease in a population. One variant of the model is given by the following three equations:

dS

— = a(l+R+S8) —aS-bSI

dt

dl = bSI—-al-cl

dr

dR

— = c¢lI-aRr 1
P cl-a (D

where S is the number of susceptible individuals, I the number of infected individuals and R
the number of recovered individuals in the population and ¢ is time.

The parameters are defined as follows:

a is the birth rate and also the death rate. Since these rates are equal, the population maintains
a constant size, R+ I+ S = N, where N is a constant.

b is the transmission likelihood. When a susceptible and infected individual meet, the sus-
ceptible becomes infected with some probability. The parameter b defines the rate that sus-
ceptible and infected individuals meet and the infection is transmitted.

c is the recovery rate. An infected individual recovers at this rate, and then is immune to the
disease.

a. Using a and N to define your time and population scales, respectively, non-dimensionalize
the three differential equations.

Given the appropriate non-dimensionalization, and using the constraint that the population
maintains a constant size, the equations become

ﬂ = l1-x—-ax

ar y

d

d—;ﬁ = axy—-(1+pPy 2)

where x is the probability that an individual is susceptible, y is the probability that an indi-
vidual is infected, and the probability that an individual is resistant (z) can be determined
from the constraint x+ y+z=1.

b. Find all fixed points (x*, y*) and determine their stability for all combinations of «, § > 0.

¢. Suppose that f = 1. A bifurcation occurs as a changes. Classify this bifurcation, and
sketch a phase portrait before and after the bifurcation.



Problem 2 Consider the following mechanical system.

m Friction
Q) w O

Figure 1: Mechanical system for problem 2.

A block, of mass m, sits on a conveyer belt moving at velocity vy. The mass is attached to a
wall with a linear spring of stiffness k. The position of the mass, x, as a function of time, ¢,
obeys the following differential equation

d’x

mﬁ =—kx- f(S)

where f is the frictional force that the conveyer belt applies to the block and § is the velocity

of the block relative to the belt, § = d—); — vp. This equation can be non-dimensionalized to
d*X ax
— =-X-F|—-V 3
dT? ( art ) )

Suppose that V = 1. Also, suppose that the friction force as a function of relative speed has

the following form

l+ax : x>0
-l+ax : x<0

F(x)= { “4)

a. Perhaps the simplest model of friction is Coulomb friction, which is Eq. 4 with a = 0.
Show that linearization predicts that the unique fixed point, X = —F(-1) =1, dX/dT =0, is
a center and explain why this is, in fact, a true center.

b. Show that, as a varies, the fixed point goes from a stable to an unstable spiral (assuming
lal <2).

c. It turns out that when the fixed point becomes unstable, a limit cycle appears. This is a
Hopf bifurcation. Is it a subcritical, supercritical or degenerate Hopf? Briefly (in a sentence
or two) explain.



Problem 3 Define a functional /: X — R by

J( )—fm{l( ’)2+1 o z}d
u) = o 2u 2u u X

X ={ueC?*([0,7/4]) : u(0) =0, u(r/4) =1}

a. What is the Euler-Lagrange equation for J?

b. Find the function u € X that minimizes J.

HINT: It turns out that u'(0) = 1, which may be helpful in evaluating the constants of inte-
gration.

Problem 4 Consider the boundary value problem (BVP)

u' +u=f(x) 0<x<2m
u(0) =0, u2m) =0,

for u € C2([0,27x]), where f € C([0,2x]) is a given function.
a. Show that a necessary condition for the BVP to have a solution is that

2r

f(x)sinxdx=0.
0

b. If a solution of the BVP exists, show that there is a unique solution u such that
27
f u(x)sinxdx=0.
0

¢. Write down the set of equations satisfied by the generalized Green’s function G(x,¢) for
this BVP. (You don’t have to solve for G.)

d. Write down the BVP and orthogonality condition that are satisfied by the function

271
u(x) = ; G(x,¢) f(S) dS.



Problem 5 In the relativistic mechanics of planetary motion around the Sun, one comes across the

problem
d2
d—ebzt+u:a:(1+eu2),

where a > 0. Here, u =1/r, where r is the normalized radial distance of the planet from the
sun, and 6 is the angular coordinate in the orbital plane. Find a first-term approximation of
the solution u that is valid for large 6 for small € that satisfies the initial conditions

u0) =1
u'(0) =0.

Problem 6 Find the leading order composite expansion for small € for the problem

3
ezy"+e§xy’—y:—x, for0<x<1

y(0) =1,
y(1) =2.



Applied Math Prelim Examination (Spring 2015)

Instructions.

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not
receive credit. State all results and theorems that you are using.
2. Use separate sheets for the solution of each problem.

1. Consider the following two sets of coupled ODEs.

Set 1 (Egs.

d
= = —y-al@®+y?)
R N 1)
Set 2 (Egs. [2)
dj = —y+ay’
d
- = a-ay (2)

e Show that, for both sets of ODEs, linear stability predicts that the fixed point (z = 0,y = 0)
is a center.

e For one set of ODEs, the fixed point (z = 0,y = 0) is, in fact, a stable spiral. Which one? Is
it possible for the linearized equations to correctly predict the stability of the fixed-point?
Why or why not?

e For one set of ODEs, the fixed point (x = 0,y = 0) is, in fact, a center. Which one? Show
that, for this set of ODEs, closed orbits exist.

2. Consider the following ODE
dz
dt
e Sketch bifurcation diagrams for 1) b = 0; 2) b = ¢; and 3) b = —e, where € is a small,
positive constant.

= z(xr—a)+b (3)

(On your bifurcation diagram, indicate stable fixed points with a solid line, unstable fixed
points with a dashed line and label all bifurcations).
e Sketch a stability diagram.

(Recall that a stability diagram will have a and b as axes, and will indicate regions where
there are different numbers of fixed points).



3. Consider waves in a resistant medium that satisfy the problem
Ut =Ugy — P, for 0 <z <7
uz(0,t) =0, wug(m,t)+u(mt) =0,
u(@,0) =¢(x), w(x,0)=1p(z),

where u > 0 is a constant. Write down the Fourier series expansion of the solution.

4.
(a) Show that

lél%ﬂmm$:lax—ﬂﬂﬂﬁ

(b) Express the linear second order ODE,
Y+ ay/+c*y = 0.
y(0) =0, 3/ (0) =1,
as an integral equation of the form
/ K(z,t)y

Determine the functions h(x) and K(x,t)?
(c) What is the asymptotic behavior of y (as z — 00) as a function of the sign of a?

5. Find the the first two terms in the asymptotic approximation of the integral

/zwoﬁﬂﬁ
0

in the following two limits: (a) z — —oo and (b) x — oco. (Hint. Use two different methods to
study the cases (a) and (b).)

6. The equation of motion for a pendulum of length L is
2

% + gsm(@) =0,
where 0(t) is the angle measured from the downward vertical direction, and g is the acceleration of
gravity. For small initial data,
de
o
use the method of multiple scales to calculate the first two terms in the asymptotic expansion (in
€) of the frequency of the pendulum. You will need to introduce the slow time scale T = €*t.

0(0) =€ < 1, 0)=0



Applied Mathematics Preliminary Exam (Fall 2015)

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will
not receive credit. State results and theorems you are using.

2. Use separate sheets for the solution of each problem.

Problem 1 Consider the system
i=-y-x°,
y=x.
(a) Is the equilibrium (x, y) = (0,0): (i) linearly stable; (ii) linearly asymptotically stable; (iii)
hyperbolic? What do your answers imply about the nonlinear stability of the equilibrium?

(b) Find a Liapunov function for the system of the form
V(x,y) = Ax® + By,
What can you conclude about the nonlinear stability of (0,0) from the Liapunov function?

Problem 2 Consider the discrete dynamical system with iterates x, given by the map

3
Xn+1 = —HXn — Xy,

where p is a real parameter.

(a) Find the fixed points of the system as a function of u and determine their linearized
stability.

(b) What kind of bifurcation occurs at x,, =0 as y increases through p=1?

(c) If x;, is small and p =1 +e€ is close to 1, show that
Xpa2 = (1+2€)x, + fo’,t,

after neglecting smaller terms. Determine whether the bifurcation in (b) is subcritical or
supercritical.

Problem 3 Find among all continuous curves of length £ in the upper half-plane of R? passing
through (—a,0) and (a, 0), the one that, together with the interval [—a, a], encloses the largest
area. Then, compute the maximum area too.

[Hint: You may want to use the symmetry of the problem to your advantage! Also, note
that the length of the curve ¢ does not include the length of the interval 2a on the horizontal
axis. |



Problem 4 Consider a simple rectangular domain Q = {(x,y) € R20<x<a0< y < b} with
a > b, and the simple heat equation with the following initial and boundary conditions:

ou _0°u . 0’u

ot 0x2 0y?

oot =%wn=0 0<y=<b te[0,00):
ox Nz _ax 2 =V, onVU=y=p, , O0);

for (x,y,1) € Q x [0,00);

ou ou
—(x,0,)=—(x,b,) =0, on0<x<a,te[0,00);
dy dy

u(x,y,0) = f(x,y), on (x,y) € Q.

(a) Write down the general solution of this problem as a double Fourier series. [Hint: Use the
separation of variables.]

(b) Identify the spatial modes (i.e., Fourier basis functions involving only (x, y) variables, not t)
corresponding to the three lowest frequencies.

(¢) Determine the solution of the above initial and boundary value problem in the case of f(x,y) =
¢ = a real-valued constant.

Problem 5 Consider the following regular Sturm-Liouville problem (RSLP):

f"+w*f=g 0<x<1;
fo=0=f"(1),
where w > 0 is not an integer multiple of 7.

(a) Find the Green’s function for this RSLP.

(b) What happens if we try this with w = 0?

Problem 6 Find a one-term approximation, valid to order €, of the solution to the following dif-
ferential equation

for 0 < x < 1, with boundary conditions y(0) = —1 and y(1) = 1.

It might be useful to know that

1 2 1
f—dx:\/jtanh_1 xX\/—|+b
—-0.5x2+a a 2a

where a is a positive constant and b is a constant.

It also might be useful to know that tanh is an odd function and that lim,_., tanh(x) = 1 and
lim,_. _stanh(x) = —1.



€ =0.05

Figure 1: This is a numerical solution of the equation with € = 0.05 (gray), plotted with my solution
for the one-term approximation (black).



GGAM 207 Preliminary Exam (Spring 2014)

Instructions

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not
receive credit. State results and theorems that you are using.

2. Use separate sheets for the solution of each problem.

Problem 1 Consider

ﬂ = x(a-x-7y)
dr y
ﬂ = (y-2ax-y)
dr y y

(a) Find all the equilibrium points.

(b) Find the linear (in)stability of each equilibrium point as a function of a.
(¢) Sketch the phase portrait for representative values of a.

(d) Sketch the bifurcation diagram in the (a, x)-plane.

Problem 2 Find the shortest distance between two points (a, b) and (c, d) in R? using the Calculus
of Variations.

[Hint: Consider a curve (x(),y(t)), 0 < ¢t <1 with (x(0), y(0)) = (a,b) and (x(1),y(1)) =
(c,d). ]

Problem 3 Consider the following regular Sturm-Liouville problem:

xf+Ax'f=0 l<x<e
fQ)=f(e)=0.

(a) Find the eigenvalues and normalized eigenfunctions of the above RSL problem. [Hint: Convert
this into a simpler RSL problem using the change of variable of x.]

(b) Expand the function g(x) =1 in terms of these eigenfunctions.

Problem 4 Find the leading order uniform approximation to the solution y(x) of
ey —(1+x%y' +y=0, y0) =1, y1)=0

in the limit € | 0*. [Hint: boundary layer theory. ]



Problem 5 Use the method of stationary phase to find the leading order approximation, as x — oo,

of
1,
fe”” dt.
0

Problem 6 A wave h of single frequency w in a medium of variable speed c(x) > 0 satisfies

d

2
+w h=0.
dx w

¢ (x)@
dx

(a) What is the condition under which the WKB method produces a good approximation? Under
this condition, compute the WKB approximation of / up to second order.

(b) Suppose c(x) — c4+ as x — +oo. What are the wavelengths as x — +oo? Let hy = limy_.o | 2(X)|
and h_ =limy_._ |h(x)|. With the WKB approximation, determine £, in terms of c. and
h_.



Applied Math Prelim Exam (Fall 2014)

Instructions.

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not
receive credit. State all results and theorems that you are using.
2. Use separate sheets for the solution of each problem.

1. Consider the mechanical system pictured below. A particle attached to a spring, of rest length
1, slides along a rigid rod. The rigid rod is situated a distance h and at an angle 6 from the surface
to which the spring is attached.

FIGURE 1. A mechanical system.

Assuming that damping is large, the differential equation that governs the particle’s position is
of the form

dx 1 .
I <\/h2 T B — 1> (x + hsin(0)) .

There are two parameters in the equation, 6§ and h. Sketch a bifurcation diagram in h for the
case where § = 0. Then, sketch a bifurcation diagram in @ for the case where h = 1+ ¢ (where ¢ is
an arbitrarily small, but non-zero, positive number). Finally, sketch a stability diagram in h and
#, and find an equation for the boundaries between the phases. In all of your answers, assume that
h>0and —7/2 <6 <m/2.

2. A generic conservative, one degree-of-freedom mechanical system obeys the following differential
equations

T =1x2 T2 =—g(m1)
Suppose that there is a local, isolated minimum of the potential energy function V(z;) = foxl g(z1)

at x7. Show that this minimum at x] corresponds to a stable equilibrium at z1 = 27, 2 = 0. You
may assume that ¢ is O,

Note. Recall that a fixed point T is asymptotically stable if all nearby trajectories converge to &
as time ¢ — oo; it is Lyapanov stable if nearby trajectories remain close to z for all time. In this
problem, by “stability,” we refer to either type.



3. Find the path between (x1,y;) and (x2,y2) which a particle sliding without friction and under
constant gravitational acceleration will traverse in the shortest time. You may assume that the
particle is released from (z1,y1) at rest and hence conservation of energy implies that

1 2
imv + mgy = mgy.

4. Determine the Green’s function associated with the BVP
a?y’ —ay' —3y =23, y(1)=0,y(2) =0,
and give a solution to the BVP.

5. Find the leading order approximations in the limits * — oo and * — —oo of

/ e sin(¢) dt .
0

6. For 0 < e < 1 and k(ex) > 0, Vo € R, with k(ex) ~ O(1), consider the following two second
order ODEs:

d 1 dh
- I = 1
dx [kz(ex)Q dx] i =0 (1)

1 d’hy
——— +hy=0. 2
k(ex)? da? T 2)

Equation (1)) describes the amplitude h;(x) of a wave in a medium with varying wave speed, while
equation ([2) describes the amplitude ho(z) of a harmonic oscillator with varying frequency.

Compute the WKB approximation (up to O(e), i.e., two terms in the asymptotic expansion) for
both equations and . Furthermore, assuming that

lim k— k- and lim k— ki,

T—r—00 T—00

and that
lim |hi(z)*=1and lim |ho(x)|* =1,
T——00 T——00
determine the limits

Ili_)rglo\hl(x)\g and xli_}rrolo]hg(x)]Q.



Spring 2013: PhD Applied Math Preliminary Exam

Instructions:

1. All problems are worth 10 points. Ezxplain your answers clearly. Un-
clear answers will not receive credit. State results and theorems you are
USING.

2. Use separate sheets for the solution of each problem.

Problem 1. Consider the 2x2 system of ODEs, where a, b are real constants,

(g)z(_i)+a(:c2+y2)<z)+b(az2+y2)(_i{).

(a) Linearize the system at the origin. Classify the equilibrium of the lin-
earized system and determine its linearized stability.

(b) Write the system in polar coordinates, sketch the phase plane, and de-
termine how the nonlinear stability of the origin depends on (a, b).

Problem 2. Consider the following initial-value problem for an infinite-
dimensional system of ODEs for real-valued functions {z1(t), z2(t), x3(t), ... }

d
=l o) =, n=123...
(a) Solve for x,(t).

(b) If >°>° n?c2 < 1, show that a solution exists in some time interval
t| < T, and give an estimate for the minimal existence time 1" > 0.
g

(c) If > ¢2 <1, show that a solution need not exist in any interval [¢t| < T,
however small one chooses T" > 0,.

Problem 3. Let J q
L= (g ) +ate)

where p, ¢ are smooth, real-valued functions on on @ < x < b and p(z) > 0.
(a) Define the Green’s function G(z, ) for the regular Sturm-Liouville prob-
lem Lu = f for a < x < b, with u(a) =0, u'(b) = 0.

(b) Show that G is symmetric i.e. G(z,§) = G(§,x), and give a physical
interpretation of this symmetry.



Problem 4. Let X = {u € C?([1,2]) : u(1) = 0, u(2) = 1} and define the
functional J : X — R by

J(u):/1 —"LZde.

(a) Write down the Euler-Lagrange equation associated with J.

(b) Solve the Euler-Lagrange equation to find the minimizer of J on X.

Problem 5. Consider a vibrating string that is initially at rest and is sub-
ject to a spatially dependent, time-periodic external force with frequency w.
Suppose that the displacement u(zx,t) satisfies
x
Uy — gy = Asin (%) sin (wt) O<z<L, 0<t,
u(0,t) =0, u(L,t) =0, 0<t
u(z,0) =0, ug(z,0) =0, 0<z<L.

where A # 0 is the amplitude of the external force.
(a) Solve this IBVP for u(x,t).

(b) For what values of w is the solution also periodic in time?

Problem 6. Let v > 0 and —oo < U < oo be constants, and consider the
following PDE with boundary conditions at x = 4o00:

Up + Uy = Vg, —o <z <oo, 0<t,

(1)

u(z,t) — U as © — —oo0, u(z,t) — 0 as x — 0.

(a) If x, ¢, and u have dimensions of length, time, and velocity, respectively,
show that this problem is dimensionally consistent. Determine the dimen-
sions of v and U, and use v and U to nondimensionalize the problem.

(b) Consider traveling wave solutions v = u(x — ct) of (1). What can you
say using dimensional analysis about the speed ¢ and a typical width L of a
traveling wave?

(c¢) Find a first-order ODE for the traveling wave profile v = u(z), where
2z = x — ct. Show that traveling waves exist if U > 0 but not if U < 0, and
verify the results of the dimensional analysis.



GGAM Prelim Questions - Fall 2013

Instructions:

* All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive
credit. State results and theorems that you are using.

* Use separate sheets for the solution of each problem.
1. Consider the second order ODE which describes the height, i(x), of a wave in a medium with varying wave
speed
a’h
W +k (x) h=0

where k(x) is the local wavenumber
k(x) =k + (kp — k;)tanh(x/L), 0<kj <ko.

(a) Non-dimensionalize the system by using L to measure length.

(b) For L > 1, write down the first two leading order (i.e. eikonal and transport) equations for the WKB
approximation of h(x) (Do this by considering a general form of k(x) - you need not substitute the
particular k(x)).

(c) Suppose the wave profile is asymptotically
h(x) = Ae’™*  for x— —oo.
Solve the WKB equation(s) to determine the asymptotic profile |h(x)| for x — oco.

2. The function y(x;e) satisfies
ey"+vVxy'+y=0 in 0=<x<l

with boundary conditions y(0) =0, and y(1) = 1. Find the matched asymptotic (inner and outer) solutions.

3. The small, centrally symmetric vibrations of a stretched uniform circular membrane, fixed round its perime-
ter, are approximately described by the equations

= _—
0 t2 or? ror
u(R,t) =0, t=0.

u  ,(0°u 10u
a , 0<r<R,t=0;

Here R is the radius of the membrane, u(r, t) is the transverse displacement of a point distant r from the
center of the membrane at time ¢, and a is a positive constant.
(a) Separate variables to obtain a singular Sturm-Liouville system.

(b) Find the eigenvalues of this system in terms of the zeros of the Bessel function Jy, and write down the
corresponding eigenfunctions.



4. Consider the following regular Sturm-Liouville (RSL) problem:

f"+Af=0 0<x<¢;
f1(0) = f(&) =0.

(a) Find the eigenvalues and normalized eigenfunctions of the above RSL.

(b) Let S =span{¢, P}, the subspace of L?(0, #) consisting of all possible linear combinations of the first
two eigenfunctions ¢, ¢, of the above RSL. Find the best linear approximation in S to the function
gx) = 02 — x2 in the L2 sense.

5. Consider the system

d
d_JtC =ax+y-xf(x*+y%
d
d_Jt/ =-x+ay—-yf(x*+y%

where a is real, f is continuous, £(0) =0 and f(u) = u'/?.

(a) Show that the origin is the only equilibrium point and determine its linear stability.
(b) Using the Poincare-Bendixson theorem, show that there exists a stable limit cycle if a > 0.
(c) Consider the special case with f(u) = u!/? for all r = 0 with a > 0. Find the limit cycle explicitly.
6. For the solar system, Einstein’s General Relativity can be viewed as a small perturbation to the regular
Newtonian theory of gravity. The orbit of a planet going around the sun can be described in terms of the

polar coordinates by r(6) where r is the distance from the planet to the center of mass of the system and 6
is the angle of the planet in its orbit. In General Relativity, r(6) is approximately governed by the equation

d2r+ el O<e<l
—+71r=—+e¢lr*, €
d6? L
where L is related to the angular momentum of the planet and € is a small positive parameter representing
the deviation from the Newtonian theory. When € = 0, this is the equation for Newtonian gravity.
(a) Find the equilibrium points and classify their stability for € > 0.
(b) Find the limits of the equilibrium points as € — 0.

(c) For € > 0 sketch the phase portrait (in the half plane r = 0) and identify the region where there are
periodic solutions in 6.



Graduate Group in Applied Mathematics
University of California, Davis
Preliminary Exam
March 29, 2012

Instructions:
o This exam has 3 pages (8 problems) and is closed book.
» The first 6 problems cover Analysis and the last 2 problems cover ODEs.
e All problems are worth 10 points.

« Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

o Use separate sheets for the solution of each problem.

Problem 1: (10 points)
For u € L!(0,00), consider the integral

v(x):f —L—t—(-)idy
0o X+Yy

defined for x > 0. Show that v(x) is infinitely differentiable away from the origin. Prove
that v’ € L' (¢, 00) for any € > 0. Explain what happens in the limit as € — 0.

Problem 2: (10 points)
Let X < L%(0,27) be the set of all functions u(x) such that
K -
ux)= lim Y axe'® in L*-norm, with |ax| < (1 + k7.
K—oo ke K

Prove that X is compact in L?(0,27).



Problem 3: (10 points)
For ¢ >0, we set

() = 1 sin( €ENX ) €
e =) 2v e
and define the convolution for u € L?(R):

Ne* U(X) = fRne(x—y)u(y) dy.

For € > 0, prove that \/e(1, * u)(x) is bounded as a function of x and ¢, and that 7, * u
converges strongly in L2(R) as € — 0. What is the limit?
Problem 4: (10 points)

Let u, : [0,1] — [0,00) denote a sequence of measurable functions satisfying

1
supf Un(x)log(2 + u,(x)) dx < oo.
n Jo

If u,(x) — u(x) almost everywhere, show that u € L' (0, 1) and that u, — uin L! strongly.
(Hint. One possible strategy is Egoroff’s Theorem.)

Problem 5: (10 points)
Let u: [0,1] — R be absolutely continuous, satisfy 4(0) =0, and

1
]ﬂmeM<m.
0

Prove that

. ux)
lim

x—0t

exists and determine the value of this limit.

X2

Problem 6: (10 points)
Consider on R? the distribution defined by the locally integrable function

1 .
_ 5 lft*|x|>0
E(x’t)*{o if £—|x|<0 °

Compute the distributional derivative

rE o
otz ox?’



Problem 7: (10 points)
Consider
X = y+ax(1—2b—x2-y2) y=—-x+ay( —xz—yz)

with0<a<1,0<b< %; prove that there is atleast one limit cycle and calculate the period
T(a,b) (i.e., write it as an integral).

Problem 8: (10 points)

Consider the system
X=y-2x J=p+r-y.
(@) Sketch the nullclines of the system for different values of p in order to find and clas-
sify the bifurcation that occurs at p = p,.
(b) Classify the fixed points and sketch the phase portrait for y slightly smaller than ..

(c) For which values of u the system admits a stable spiral?



Fall 2012: PhD Applied Math Preliminary Exam

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Un-
clear answers will not receive credit. State results and theorems you are
USINg.

2. Use separate sheets for the solution of each problem.

Problem 1. Consider the one-dimensional discrete dynamical system
Tyl = pe’, n=0,1,2,...

where x, € R and p is a real parameter.

(a) Describe qualitatively how the the fixed points of the system change as
1 increases from —oo to oo and determine their stability.

(b) What types of bifurcation occur when there is a change in stability of
the fixed points?

Problem 2. Consider the 3 x 3 system of ODEs
T1 = Ta, Ty = —T7, T3 =1— (:v% —I—$§)

(a) Show that trajectories of the system in phase space {(x1, 2, 23) € R3}
lie on the cylinders

x} 4 a3 = ¢ (1)
where ¢ > 0 is a constant.
(b) Sketch the trajectories on the cylinder (1) for: (i) ¢ =0; (ii) 0 < ¢ < 1;
(ili) c=1; (iv) ¢ > 1.
(c) Does the system have any equilibria? Does it have periodic solutions?
Why doesn’t your answer contradict the Poincaré- Bendixson theorem?

Problem 3. Compute the Green’s function for the boundary value problem

u' +u= f(x) 0<x<l,
W'(0)=0,  u(l)=0,

and write out the Green’s function representation of the solution.



Problem 4. Suppose u(x) satisfies the following boundary value problem

on [—1,1]
Lu = f(z) —l<z<l, @)
u(—1) =0, u(l) =0.

where f:[—1,1] — R is a given smooth function and

Lu =4" 4 xu' + 3u.

(a) Find the formal adjoint L* of L and the adjoint boundary conditions.

(b) Verify that v(z) = 1—2? is a solution of the homogeneous adjoint problem
and derive a necessary condition that f(z) must satisfy if (2) is solvable.

Problem 5. (a) Suppose that 0 < € < 1 is a small positive parameter. Use
the method of matched asymptotic expansions to construct leading order
approximations

x = xo+ O(e), y=1yo+0() ase—0"

of the solution x(¢;€), y(t; €) of the initial value problem

i=—xy, e=a"—y,  x(0)=mz, y(0)=uyo
that are valid for times of the order € and times of the order 1.

(b) Sketch the phase plane of this system. How do solutions behave as
t — 4007

Problem 6. (a) Find all separable solutions u(z,t) = F(z)G(t) of the
wave equation on the interval 0 < x < 1 subject to homogeneous Dirichlet
boundary conditions:

Utt—uxw:() O<rxl

u(0,t) =0, u(1,t) = 0.
(b) Consider a Dirichlet problem for the wave equation on a rectangle of sides
length 1 and 7" > 0,

Ugp — Ugy = 0 0<z<l1l 0<t<T,
u(z,0) = f(x), u(z, T) = g(x) 0<z<1,
u(0,t) = h(t), u(l,t) = k(t) 0<t<T,

where f,g : [0,1] — R and h,k : [0,7] — R are given functions. Suppose
that this problem has a solution. Show that solutions are unique if T is
irrational and non-unique if 7" is rational.



Graduate Group in Applied Mathematics
University of California, Davis
Preliminary Exam
March 24, 2011

Instructions:
e This exam has 4 pages (8 problems) and is closed book.
o The first 6 problems cover Analysis and the last 2 problems cover ODEs.

» All problems are worth 10 points.

e Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

» Use separate sheets for the solution of each problem.

Problem 1: (10 points)
Let Q = (0,1), the open unit interval in R, and consider the sequence of functions f,(x) =
ne”""*. Prove that f,, /~ f weakly in L' (Q), i.e., the sequence f,, does not converge in the
weak topology of L! (Q).
(Hint: Prove by contradiction.)

Problem 2: (10 points)
d2
Let Q = (0,1), and consider the linear operator A = 12 acting on the Sobolev space of
X
functions X where
X ={ue H*(Q) | u(0)=0,u1) =0},

and where

) ) du du
H°(Q)=<uel (Q))—EL Q),—€eL“(QY) ;.
dx d x2

Find all of the eigenfunctions of A belonging to the linear span of
{cos(ax),sin(ax) | a e R},

as well as their corresponding eigenvalues.



Problem 3: (10 points)
Let Q = (0,1), the open unit interval in R, and set

vix)=(1+ |10gx|)_1.

Show that v € Wh1(Q) and that v(0) = 0, but that v ¢ L1(Q). (This shows the failure of

X
d d
Hardy’s inequality in L'.) Note that W (Q) = {u e LY(Q) ’ d_u € Ll(Q)}, where d_u de-
X X

notes the weak derivative.

Problem 4: (10 points)
Let f(x) be a periodic continuous function on R with period 27. Show that

f©& =Y by1,6in?, ey

n=—oo
that is, that equality in equation (1) holds in the sense of distributions, and relate b,, to
the coefficients of the Fourier series. Note that § denotes the Dirac distribution and 7, is
the translation operator, given by 7, f(x) = f(x + y).

S .
(Hint: Write f(x)= ) c,e"" with convergence in L?(0,27) and where the coefficients
n=—00

1 2n
e "™ f(x)dx.)

Cn:_
27 Jo



Problem 5: (10 points)
Let f(x) be a periodic continuous function on R with period 27. Given € > 0, prove that
for N < oo there is a finite Fourier series

N
P(x) =ag+ )Y_ lancos(nx) + by sin(nx)] )
n=1

such that
lp(x) — f(x)|<e VxeR.

This shows that the space of real-valued trigonometric polynomials on R (functions which
can be expressed as in (2)) are uniformly dense in the space of periodic continuous func-
tion on R with period 27.

(Hint: The Stone-Weierstrass theorem states that if X is compact in R4, d € N, then the
algebra of all real-valued polynomials on X (with coordinates (x1, X2, ..., X)) is dense in
C(X).)

Problem 6: (10 points)
For a € (0,1], the space of Hélder continuous functions on the interval [0, 1] is defined as

C®¥([0,1]) = {u e C([0,1]) : |u(x)— ul<Clx—yl*, x,yel0,1]},

and is a Banach space when endowed with the norm

Il 2ell co = sup |u(x)|+ sup lu(x) — uly)|
coa(o,]) = Y wa -
(1o.1) x€[0,1] xye0,1 |1x—=yl¢
Prove that the closed unit ball {u € C**([0,1]) : lullcoagoy < 1} is a compact set in

C([0,1]).

(Hint: The Arzela-Ascoli theorem states that if a family of continuous functions U is
equicontinuous and uniformly bounded on [0, 1], then each sequence u, in U has a uni-
formly convergent subsequence. Recall that U is uniformly bounded on [0,1] if there
exists M > 0 such that |u(x)| < M for all x € [0,1] and all u € U. Further, recall that U is
equicontinuous at x € [0, 1] if given any € > 0, there exists 6 > 0 such that |u(x) —u(y)| <e€
forall |[x—y|<dandeveryue U.)



Problem 7: (10 points)
Consider the system of ordinary differential equations

(a) Show that (x,y) = (0,1) and (0, —1) are fixed point of the system. Linearize the system
about the fixed points (0, 1) and (0, —1) and use linearized system to classify the fixed

points.
(b) Sketch the phase portrait of the full system and re-classify the fixed points.

Problem 8: (10 points)
Consider the system describing a particle mass moving in a double-well potential V (x) =

—%xz + }lx‘l, ie.,
dv_ 3
dx

.2
x
(@) Show that the energy E(x, X) = > + V(x) is a conserved quantity for this system, i.e.

E(x, x) is constant along trajectories.
(b) Sketch the x, x-phase portrait. Classify the fixed points of the system (0, 0) and (+1,0).



Graduate Group in Applied Mathematics
University of California, Davis
Preliminary Exam
September 20, 2011

Instructions:
e This exam has 3 pages (8 problems) and is closed book.
e The first 6 problems cover Analysis and the last 2 problems cover ODEs.
e All problems are worth 10 points.

e Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

» Use separate sheets for the solution of each problem.

Problem 1: (10 points)
Let (X,d) be a metric space and let (x;,) be a sequence in X. For the purpose of this
problem adopt the following definition: x € X is called a cluster point of (x,) iff there
exists a subsequence (x;,) k=0 such that limy x,,, = x.

(@) Let (an)n=0 be asequence of distinct points in X. Construct a sequence (x,) ;>0 in X
such thatforall k=0,1,2,..., a is a cluster point of (x,).

(b) Canasequence (x,) in ametric space have an uncountablenumber of cluster points?
Prove your answer. (If you answer yes, give an example with proof. If you answer
no, prove that such a sequence cannot exists). You may use without proof that Q is
countable and R is uncountable.

Problem 2: (10 points)
Let X be a real Banach space and X* its Banach space dual. For any bounded linear
operator T € #B(X), and ¢ € X*, define the functional T*¢ by

T*¢p(x)=¢p(Tx), forallxe X.

(a) Prove that T* is a bounded operator on X* with || T*|| < || T||.

(b) Suppose 0 # A € R is an eigenvalue of T. Prove that A is also an eigenvalue of T*.
(Hint 1: first prove the result for A = 1. Hint 2: For ¢ € X*, consider the sequence of
Cesaro means ¢y = N~ ZQ’ZI ¢n, of the sequence ¢,, defined by ¢, (x) = p(T"x).)

1



Problem 3: (10 points)
Let /€ be a complex Hilbert space and denote by 28(.#°) the Banach space of all bounded
linear transformations (operators) of # considered with the operator norm.

(a) What does it mean for A € 2B(A°) to be compact? Give a definition of compactness
of an operator A in terms of properties of the image of bounded sets, e.g., the set
{Ax|xe A, x| < 1}.

(b) Suppose A is separable and let {e;},,>¢ be an orthonormal basis of #°. For n =0, let
P,, denote the orthogonal projection onto the subspace spanned by ey, ..., e,. Prove
that A € () is compact iff the sequence (P, A) ;>0 converges to A in norm.

Problem 4: (10 points)
Let Q < R" be open, bounded, and smooth. Suppose that {fj}‘]’.‘;1 c L?(Q) and fi—=&

weakly in [%(Q) and that fi(x) — g2(x) a.e. in Q. Show that g; = g» a.e. (Hint: Use Egoroff’s
theorem which states that given our assumptions, for all € > 0, there exists E < Q such that
A(E) <€ and fj — go uniformly on E°.)

Problem 5: (10 points)
Let u(x) = (1+|logx|)~!. Prove that u e W%1(0,1), u(0) = 0, but Yoo,
X

Problem 6: (10 points)

2m
Let H = {fe L2(0,2m) :

fx)dx = 0}. We define the operator A as follows:

(Af)(x) :fo fdy.

(a) Prove that A : H — L%(0,27) is continuous.

(b) Use the Fourier series to show that the following estimate holds:

IAS 51 0,2m = CI 2 0,2m) »

where C denotes a constant which depends only on the domain (0,27). (Recall that
2t du |?
18 = |
o 0

P (x)| dx.)




Problem 7: (10 points)
Consider the system

(a)

(b)

X=pux+y+tanx y=x-y.

Show that a bifurcation occurs at the origin (x, y) = (0,0), and determine the critical
value u = u. at which the bifurcation occurs.

Determine the type of bifurcation that occurs at u = .. Do this (i) analytically and
(ii) graphically (sketch the appropriate phase portraits for pu slightly less than; equal
to; and slightly greater than u.).

Problem 8: (10 points)
Consider the differential equation

5&+x—x3:0,

with the initial condition x(0) = €, %(0) = 0, where € < 1. Use “two-timing” and perturba-
tion theory to approximate the frequency of oscillation to order €?.

(a)

(b)

(©

(d)

Make a change of variables so that the differential equation is in the form Z + z +
€h(z,z) =0, i.e., in aform where € appears naturally in the equation as a perturbation
parameter.

Rewrite the equation assuming two times scales, a fast time 7 = ¢ and a slow one
T =7, and the solution form z(t,€) = zo(7, T) + €21 (t, T) + O(€?).

Show that the order 0 (i.e., O(1)) solution takes the form

zo(T, T) =1r(T)cos(t +¢(T)) .

Use the order 1 (i.e., O(e)) equation to determine the frequency of oscillation to
order €. (Hint: The order 1 (i.e., O(¢)) equation contains resonant terms, which
would cause the solution to grow without bound as ¢ — oco. A solution that remains
bounded for large 7 is obtained by setting the coefficients of the resonant terms to
zero. This yields equations that can be used to find the order €? correction for the
frequency of the oscillation. Note: Be sure to look for “hidden” resonance terms. It
may be helpful to use the trig identity cos®(0) = ?'1 cos(0) + ;11 cos(30).)



Graduate Group in Applied Mathematics
University of California, Davis
Preliminary Exam
April 1, 2010

Instructions:
« This exam has 3 pages (8 problems) and is closed book.
« The first 6 problems cover Analysis and the last 2 problems cover ODEs.

« All problems are worth 10 points. Explain your answers clearly. Unclear answers will not
receive credit. State results and theorems you are using.

« Use separate sheets for the solution of each problem.

Problem 1: (10 points)
Let (X, d) be a complete metric space, x€ X,and r >0. Set D:={x€ X : d(x,X) = r}, and
let f: D — X satisfying
(£, fy) <kd(x,y)

forany x,y € D, where k € (0,1) is a constant.
Prove thatif d (56, f (J‘c)) < r(1-k), then f admits a unique fixed point. (Guidelines: Assume
the Banach fixed point theorem, also known as the contraction mapping theorem.)

Problem 2: (10 points)
Give an example of two normed vector spaces, X and Y, and of a sequence of operators,
{TalS o Tn€ L(X,Y) (where L(X, Y) is the space of the continuous operators from X to Y,
with the topology induced by the operator norm) such that {7}, is a Cauchy sequence
but it does not converge in L(X,Y). (Notice that Y cannot be a Banach space otherwise

L(X,Y) is complete.)

Problem 3: (10 points)
Let (a,) be a sequence of positive numbers such that

= 3
> @
n=1

converges. Show that
all

18

1 N

=~

1

also converges.




Problem 4: (10 points)
Suppose that #: {0, 112 - [0,1]% is a continuously differentiable function from the square
to the square with a continuously differentiable inverse h™!. Define an operator T on
the Hilbert space L?([0,1]%) by the formula T(f) = f o h. Prove that T is a well-defined
bounded operator on this Hilbert space.

Problem 5: (10 points)
Let H*(R) denote the Sobolev space of order s on the real line R, and let

il = (]R<1+|512>5m(5)|2df :

denote the norm on H*(R), where ii(¢) := zi” fR u(x)e~*¢ dx denotes the Fourier transform
of u.

Suppose that r < s < £, all real, and € > 0 is given. Show that there exists a constant C > 0
such that
lulls <ellule+Cllull, Yue H'®R).

Problem 6: (10 points)
Let f:[0,1] — R. Show that f is continuous if and only if the graph of f is compact in R?.




Problem 7: (10 points)

The precession of the perihelion of a planet in Einstein's Theory of General Relativity. In
our solar system, General Relativity can be viewed as a small perturbation to the regular
Newtonian theory of gravity. When studying the problem of planets going around the
sun, you get an equation for u = r~! where r is the distance from the planet to the center
of mass of the system and 6 is the angle of the planet in its orbit. In General Relativity, the
equivalent equation is approximately

2

% +u= % +eLu?

where L is related to the angular momentum and 0 < € < 1. When € = 0, this is the equa-
tion for Newtonian gravity.

(a) What does a circular orbit correspond to in this system?

(b) Find the fixed points and classify their stability. (There is a center and a saddle). Also,
expand the location of the center in a Taylor series in ¢, retaining only the first two
terms.

(c) Sketch the phase portrait and identify the region where there are periodic solutions
in6.

(d) When € = 0, what is the period of all of the closed orbits, r(8) ? What does this mean
for the shape of the orbits in physical space (i.e., what do the ACTUAL planetary

trajectories look like and how is this related to the result you just found?). Sketch
one orbit.

(e) Find and approximate expression for the period of nearly circular orbits when 0 <
€ < 1. What does this mean for the shape of the orbits in physical space? Sketch two
periods of such an orbit.

Problem 8: (10 points)
Consider the system

dx (@ |
— = X B
ar y
Yo ay—n+yx-y)
— = -X - .
~ y yx—y

(a) Find the equilibrium points and for what values of a they exist.
(b) Find the linear stability of each point as a function of a.
(c) Sketch the phase portrait for representative values of a.

(d) Sketch the bifurcation diagram in the (a, x)-plane.




Graduate Group in Applied Mathematics
University of California, Davis
Preliminary Exam
September 21, 2010

Instructions:
e This exam has 4 pages (8 problems) and is closed book.
* The first 6 problems cover Analysis and the last 2 problems cover ODEs.

* Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

» Use separate sheets for the solution of each problem.

Problem 1: (10 points)
Let f(x, y) denote a C! function on R?. Suppose that

£(0,0) =0.
Prove that there exist two functions, A(x, y) and B(x, y), both continuous on R? such that
fx,y) =xA(x,y) +yB(x,y) V(x,y)€R?
(Hint: Consider fhe function g(r) = f(tx,ty) and express f(x,y) in terms of g via the

fundamental theorem of calculus .)

Problem 2: (10 points)
The Fourier transform & of a distribution is defined via the duality relation

<gf'¢> = (fr‘g.*¢>

for all ¢ € C{°(R), the smooth compactly-supported test functions on R, where
1 :
F*P(x) = ——f eFp) de.
é 5 0{(3

Explicitly compute & f for the function

x, x>0

f(x):{ 0, x<0°




Problem 3: (10 points)
Let {Pp(x)};2 | denote a sequence of polynomials on R such that

P, — 0 uniformly on R as n — oo.

Prove that, for n sufficiently large, all P, are constant polynomials.

Problem 4: (10 points)
For g € L'(R?), the convolution operator G is defined on L?(R%) by

1
Gfx)= 3f gx-nfydy, feIl’®).
(2m)z IR
Prove that the operator G with
1 e ¥ 3
g(x)——4—7—t |x[ ’ xER »

is a bounded operator on L?(R3), and the operator norm | G|| op=1.




Problem 5: (10 points)
Consider the map which associates to each sequence {x, : n € N, x, € R} the sequence,
{(FdxnD)m;meN, (F({x,))m € R}, defined as follows:

{F({xn})}mzz% for m=1,2,...

1. Determine (with proof) the values of p € [1,00] for which the map F: 1?7 — ['is
well-defined and continuous.

2. Next, determine the values of g € [1,00] for which the map F: 19 — [? is well-defined
and continuous.

Note for 1 < p < oo, I” denotes the space of sequences {x,}2 | such that ¥, |x,|? < oo,
while [°° denotes the space of sequences {x,}3°, such that sup,,cy %, < co.

Problem 6: (10 points)
For each of the following, determine if the statement is true (always) or false (not always
true). If true, give a brief proof, e.g., by citing a relevant theorem; if false, give a counterex-
ample.

Let H denote a separable Hilbert space and (x,) a sequence of H.

(a) If (x,) is weakly convergent then it is strongly convergent.

(b) If (x,) is strongly convergent then it is bounded.

(¢) If (xn) is weakly convergent then it is bounded.

(d) If (x,) is bounded, there exists a strongly convergent subsequence of (x;,).
(e) If (xp) is bounded, there exists a weakly convergent subsequence of (x;,).

(f) If (xp) is weakly convergent and T is a bounded linear operator from H to R?, for
some d, then T(x,) converges in R?.




Problem 7: (10 points)
Consider the first order ordinary differential equation
dx

a=ﬁ+ax—x3=f(x),

with a, B R.

(a) What conditions on f(x) and f'(x) must be satisfied simultaneously at bifurcation
points? Briefly explain your answers.

(b) Use these conditions to find the curves of bifurcation points in a vs. § parameter
space? Sketch the corresponding curves in the a vs. § plane.

(c) Sketch the following bifurcation diagrams. Indicate the stability of the fixed points
on the diagrams and classify the bifurcations that occurs. A detailed analytical treat-
ment of the system is not required, but some justification (e.g., graphical arguments)
of your answers is required.

() Use a as the bifurcation parameter and hold § constant at § = 0.
(ii) Use « as the bifurcation parameter and hold f constant with § > 0.
(iii) Use B as the bifurcation parameter and hold « constant with a > 0.

Problem 8: (10 points)
Consider the system of ordinary differential equations in polar coordinates

d

a—;:r(l—rz)(4—r2), r=0
de ,

.-

dr r

Sketch the phase-portrait. Label all fixed points and limit cycles, and indicate their stabil-
ity.




Graduate Group in Applied Mathematics
University of California, Davis |
Preliminary Exam
January 2, 2009

Instructions:
o This exam has 3 pages (8 problems) and is closed book.
e Thefirst6 prbblems cover Analysis and the last 2 problems cover ODEs.

e Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

o Use separate sheets for the solution of each problem.

Problem 1: (10 points)
Letl<p<2.

(a) Give an example of a function f € L'(R) such that f ¢ LP(R) and a function g € L*(R)
such that g ¢ LP(R).

(b) If f € L ([R) n L?(R), prove that f € LP(R).

Problem 2: (10 points)

(a) State the Weierstrass approximation theorem.

(b) Suppose that f:[0,1] — R is continuous and

1
f x"f(x)dx=0
0

for all non-negative integers n. Prove that f = 0.

Problem 3: (10 points)

(a) Define strong convergence, x, — x, and weak convergence, x, — x, of a sequence
(xp) in a Hilbert space /.

(b) If x, — x weakly in # and || x|l — || x||, prove that x, — x strongly.



(c) Give an example of a Hilbert space # and sequence (x,) in # such that x, — x
weakly and
lxll < liminf(x,|.
n—oo

Problem 4: (10 pomts)
Suppose that T : # — A is a bounded linear operator on a complex Hilbert space A
such that ‘
T*=-T, T?=-I
and T # +il. Define ) )
P=§(I+iT), Q=£(I-—iT).

(a) Prove that P, Q are orthogonal projections on .
(b) Determine the spectrum of T, and classify it.

Problem 5: (10 points)
Let & (R) be the Schwartz space of smooth, rapidly decreasing functlons f:R— C. Define
an operator H : (R) — L?(R) by

if© if&>o,

(HAH©@) =isgn(@f (5)?{ ~if(&) ifE<0

where f denotes the Fourier transform of f.

(a) Whyis Hf € L*(R) for any f € & (R)?
(b) If f € (R) and Hf € L' (R), show that

ff(x)dx:O.
R

[Hint: you may want to use the Riemann-Lebesgue Lemma.]

Problem 6: (10 points)
Let A denote the Laplace operator in R3.
(a) Prove that

lim Bc—Af(x)dx 4nf(0), er.Sf’(RS)

where B{ is the complement of the ball of radius € centered at the origin.
(b) Find the solution u of the Poisson problem

Au=4nf(x), IJ}Iim u(x) =

for f € #(R3).




Problem 7: (8 points)
Show that the solution to the system

i=1+x1

goes to infinity in finite time.

Problem 8: (12 points)
Consider the nonlinear system of ODEs:

y=x(02+ )" - (2 + 7 -1) 1)
~x-y((2+ ) -2+ ) -1)-1)

X

y
(a) Rewrite the system in polar coordinates.

(b) For 0 = u < 1, show that the circular region that lies within concentric circles with

radius 7,,,;, = 1/2 and ;45 = 2 is a trapping region. And use the Poincaré-Bendixson
theorem to show that there exists a stable limit cycle. '

(c) Show that a sub-critical Hopf Bifurcation occurs at u = 1.




Graduate Group in Applied Mathematics
University of California, Davis
Preliminary Exam
September 22, 2009

Instructions:
 This exam has 3 pages (8 problems) and is closed book.
* The first 6 problems cover Analysis and the last 2 problems cover ODEs.

e Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

» Use separate sheets for the solution of each problem.

Problem 1: (10 points)
For € > 0, let ¢ denote the family of standard mollifiers on R%. Given u € L2(R?), define
the functions
Ue =T)e * uinR?.
Prove that
ellDuellr2@ey < Mull j2(rz)

where the constant C depends on the mollifying function, but not on u.

Problem 2: (10 points)
Let B(0,1) c R3 denote the unit ball {| x| < 1}. Prove that log|x| € HY(B(0,1)).

Problem 3: (10 points)
Prove that the continuous functions of compact support are a dense subspace of L?(R%).




Problem 4: (10 points)
There are several senses in which a sequence of bounded operators {T},,} can converge to
a bounded operator T (in a Hilbert space ). First, there is convergence in the norm,
thatis, | T, — T|| — 0, as n — oco. Next, there is a weaker convergence, which happens to
be called strong convergence, that requires that T,,f — T f, as n — oo, for every vector
f € (. Finally, there is weak convergence that requires (T, f, g) — (T f, g) for every pair of
vectors f, g e H.

(a) Show by examples that weak convergence does not imply strong convergence, nor
does strong convergence imply convergence in norm.

(b) Show that for any bounded operator T there is a sequence {T,,} of bounded operators
of finite rank so that T,, — T strongly as n — co.

Problem 5: (10 points)
Let H be a Hilbert space. Prove the following variants of the spectral theorem.

(a) If Ty and T are two linear symmetric and compact operators on H that commute
(thatis, T1 T = T>T), show that they can be diagonalized simultaneously. In other
words, there exists an orthonormal basis for H which consists of eigenvectors for
both T; and T».

(b) Alinear operator on K is normalif TT* = T*T. Prove that if T is normal and com-
pact, then T can be diagonalized.

(c) If U is unitary, and U = AI - T, where T is compact, then U can be diagonalized.

Problem 6: (10 points)
Prove that a normed linear space is complete if and only if every absolutely summable
sequence is summable.




Problem 7: (10 points)

Consider the equation
d?x N x| =0
— +x—ex|x|=
d?

(a) Find the equation for the conserved energy.

(b) Find the equilibrium points and the values of ¢ for which they exist.

(c) There are two qualitatively different phase portraits, for different values ofe. CLEARLY
sketch and label these phase portraits.

(d) Show that there exist initial conditions, for any ¢, for which solutions are periodic.

(e) For initial data x(0) = a, x(0) = 0, calculate the first two terms (in ea) of the Taylor
expansion of the period of the orbit in the limit ea — 0.

Problem 8: (10 points)
Consider the system

d
d—): =ax+y-xf(x*+y?)
d
d_)t/ =—x+ay-yf(x*+y?)

where a is real, f is continuous, f(0) =0 and f(z) = z'/2.

(a) Show that the origin is the only equilibrium point.
(b) Study the linear stability of the origin.

(c) Show that there exists a stable limit cycle if a > 0 (state and use the Poincaré-Bendixson
theorem).

(d) Take the special case with f(z?) = z for all z = 0 with a > 0. Find the limit cycle
explicitly by solving the system.




Graduate Group in Applied Mathematics
University of California, Davis
Preliminary Exam
January 4, 2008

Instructions:
o This exam has 4 pages (8 problems) and is closed book.
* The first 6 problems cover Analysis and the last 2 problems cover ODEs.

* Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

» Use separate sheets for the solution of each problem.

Problem 1: (10 points)
Define f,,:(0,1] — R by
Jn(x) = (=1)"x"(1-x).

(a) Show that }_ f, converges uniformly on [0, 1].

n=0

(b) Show that Z | fz converges pointwise on [0, 1] but not uniformly.
n=0 .

Problem 2: (10 points)
Consider X = R? equipped with the Euclidean metric,

e(x,y) = [(x1 = y)? + (x, - y2)°] 1/2}

where x = (x1,x,) €R®, y = (y1, y») € R%. Define d : X x X — R by

e(x,y) if x, y lie on the same ray through the origin,

d(x, J/) - { e(x,0) + e(O,y) otherwise.

Here, we say that x, y lie on the same ray through the origin if x = Ay for some positive
real number A > 0.

(a) Prove that (X, d) is a metric space.

(b) Give an example of a set that is open in (X, d) but not openin (X, e).




Problem 3: (10 points)

Suppose that .# is a (nonzero) closed linear subspace of a Hilbert space # and ¢ : 4 — C
Is a bounded linear functional on .#. Prove that there is a unique extension of ¢ to a
bounded linear function on . with the same norm.

Problem 4: (10 points)

Suppose that A: # — 7 is a bounded linear operator on a (complex) Hilbert space .#
with spectrum o (A) < C and resolvent set p(A) =C\o(A). For ue p(A), let

R(p, A) = (ul - A)™!
denote the resolvent operator of A.

(@) If pe p(A) and

Ay P —
T

prove that v € p(A) and

R(v,A) = [I- (u—v)R(i, A)] " R(w, A).

(b) If e p(A), prove that

R(p, Al 2z ———
IR (e, A)| (0 (A)

is the distance of u from the spectrum of A.

Problem 5: (10 points)

Letl < p <ooandlet I = (-1,1) denote the open interval in R. Find the values of a as a
function of p for which the function |x|% € wbhP(.

Problem 6: (10 points)

Let Q= {xeR® : |x| < 1} denote the unit ball in R3. Suppose that the sequences {f;} in
W4(Q) and that {8} in WH(Q; R3). Suppose also that there exist functions f € W4(Q)
and g in Wh4(Q; R3), such that we have the weak convergence

fe— finwhiQ),
g — gin W (Q;RY).

Show that there are subsequences { Ji;}and { gkj} such that we have the weak convergence
f)fkj -curl g, — Df-curlg in H Q).

2




Notation. Here f is a scalar function and g = (81, &2, g3) are three-dimensional vector-
valued function. D denotes the three-dimensional gradient (dy,,0y,,0y,) and curlg =
(ax1;6x2!aX3) X g

As customary, we use H™1(Q) to denote the dual space of the Hilbert space H(} (Q) con-
sisting of those functions in H!(Q) which vanish on the boundary (in the sense of trace).
Two useful identities are that

curl(Df) =0 for any scalar function f,

div(curl @) =0 for any vector function ,

where divF = Ox F1 + 04, F, + 04, F3 denotes the usual divergence of a vector field F =
(F, B, F3).

Hint. Test D fk;-curl gkj with a function v € H(} (€2) and use integration by parts to argue
the weak convergence.

Problem 7: (14 points)
The rotating bead on a hoop is a Hamiltonian system where

QZ g (1)2
H(6,Q) = > ECOS(Q) e cos(20))

where 6 is the angle that the bead makes from the vertical measured from “straight down,”
Q is the angular velocity of the bead, w is the angular velocity of the hoop, g is the acceler-
ation of gravity, and R is the radius of the hoop. Recall that the Hamiltonian is conserved
(it is the total energy) and the dynamics are given by

. O0H . OH

O0=—, Q=-——1.

0Q 06
(a) Write down the dynamical system.

(b) When the hoop is not rotating, this is exactly equivalent to the classical pendulum.
Non-dimensionalize this system using a natural time scale associated with the clas-
sical pendulum. This will leave you with one parameter, call it A which we shall use
to study bifurcations.

(c) Find the value of A, at which a bifurcation occurs.

(d) Sketch the phase portrait for A greater than the bifurcation value and less than the
bifurcation value.

(e) Find the fixed points and classify their stability.

(f) Find the frequency of oscillation about either of the two neutrally stable fixed points
forAi>A,.

(g) Sketch the phase portrait for A > A, if we add a damping term to the equation, i.e.,
Q=-vQwithv>0.




Problem 8: (6 points)
Estimate the period of the limit cycle in the system

i+k(x*-4)i+x=1

for k > 1. There are different ways to do this. One way to start involves recognizing the
Lienard transformation, i.e. first write the system as

+x=1.

x3
k[ 4
ac |~ (3 x)

Second, define the quantity in square brackets to be k y. Third, write down the dynamical
system for X and y. From here you can find an approximate expression for the limit cycle
and integrate the resulting equation to estimate the period.




Graduate Group in Applied Mathematics
University of California, Davis
Preliminary Exam
September 23, 2008

Instructions:
e This exam has 3 pages (8 problems) and is closed book.
e The first 6 problems cover Analysis and the last 2 problems cover ODEs.

e Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

» Use separate sheets for the solution of each problem.

Problem 1: (10 points)
Prove that the dual space of ¢, is !, where

¢o = {x = (x5) such thatlim x, = 0}.

Problem 2: (10 points)
Let {f,,} be a sequence of differentiable functions on a finite interval [a, b] such that the
functions themselves and their derivatives are uniformly bounded on [q, b]. Prove that
{fn} has a uniformly converging subsequence.

Problem 3: (10 points)
Let f € L'(R) and Vr be the closed subspace generated by the translates of f, i.e., Vf:=
{f(-—=»)|Vy e R}. Suppose f(&o) = 0 for some &. Show that k(&) =0 forall h e V¢. Show
that if Vs = L'(R), then f never vanishes.

Problem 4: (10 points)

(a) State the Stone-Weierstrass theorem for a compact Hausdorff space X.

(b) Prove that the algebra generated by functions of the form f(x,y) = g(x)h(y) where
g, he C(X)isdensein C(X x X).



Problem 5: (10 points)
For r > 0, define the dilation d, f : R — R of a function f: R — R by d, f(x) = f(rx), and
the dilation d, T of a distribution T € 2’ (R) by

1
(d;T,p) = - (T, dvirp) for all test functions ¢ € 2(R).

(a) Show that the dilation of a regular distribution Ty, given by

(T, ¢) :ff(x)(P(x) dx,

agrees with the dilation of the corresponding function f.

(b) Adistribution is homogeneous ofdegree nifd, T = r" T. Show that the §-distribution
is homogeneous of degree —1.

(c) If T is a homogeneous distribution of degree n, prove that the derivative T’ is a ho-
mogeneous distribution of degree n—1.

Problem 6: (10 points)
Let £2(N) be the space of square-summable, real sequences x = (x;, X2, X3,...) with norm

oo 1/2
lxll = (Z xi) :
n=1

Define F: #2(N) — R by
(1
F(x) = Z {—x% —xf,}
n=1 1
(a) Prove that F is differentiable at x = 0, with derivative F'(0) : £2(N) — R equal to zero.
(b) Show that the second derivative of F at x =0,

F"(0): *(N) x £*(N) — R,
is positive-definite, meaning that
F'(0)(h,h) >0

for every nonzero h € £2(N).

(c) Show that F does not attain a local minimum at x = 0.




Problem 7: (10 points)
Consider the dynamical system:

=y -4x,
y= ¥y -y-3x

Show that if a trajectory starts at any point on the line x = y, then it stays on it. Otherwise,
show that [x(z) — y()| — 0 as t — co on any other trajectories.

Problem 8: (10 points)
Consider the system
X+x+eh(x,x)=0,

where € is a small parameter, and h(x, ) = (x? — 1) x>. Show that a periodic orbit exists.

[Hint: Let (-) be an averaging operator for a function defined over [0,27], i.e., (f) :=

% 02” f(6)d8. Calculate the averaged equation, r' = (h(x, x)sin) and identify its fixed

1-3-5---(2n-1)
2-4-6---(2n)

points. You can use {cos®**! sin?™*1) = 0, (cos?") = (sin®") = to simplify

your calculations.]




Winter 2007: Applied Math Preliminary Exam
Part I: Analysis

Instructions:

(1) Ezplain your answers clearly. Unclear answers will not receive credit. State results
and theorems you are using.

(2) Use separate sheets for the solution of each problem.

Problem 1. Let C([0, 1]) be the Banach space of continuous real-valued functions on [0, 1],
with the norm || f|l = sup,|f(z)|. Let S : C([0,1]) — C([0,1]) be a bounded linear
operator. Suppose that ||S(p)|| < 2 for all polynomials p. Show that S is the zero operator.

Problem 2. For p > 1, let IP(N) be the set of sequences (z,) such that

1/p
Hzn)llp = (Z|xn|”> < 0.

(a) Show that if 1 < p < ¢ < oo then IP(N) C I9(N).

(b) Show that if 1 < p < ¢ < co then IP(N) # [9(N).

Problem 3. Suppose that for some function f : R? — R,

llII(l) lim f(:z: y) = hm hm flz,y);
— y—>

in particular, both limits exist. Does it follow that

lim x,
L f(z,y)

exists?

Problem 4. Let X be a metric space. A function f : X — X is said to be a contraction if
there exists a C' < 1 such that d(f(z), f(y)) < Cd(z,y) for all z # y. The function f is said
to be a weak contraction if d(f(z), f(y)) < d(z,y) for all z # y, without the constant C.
The contraction mapping theorem says that if f is a contraction, then it has a fixed point.
Show that the theorem also holds when f is a weak contraction and X is compact.

'Problem 5. Construct the Green’s function for the Dirichlet boundary-value problem

—u"+4u=f, u(0)=u(2)=0.

Problem 6. Let U be a unitary operator on a Hilbert space. Prove that the spectrum of U
lies on the unit circle.




Winter 2007: Applied Math Preliminary Exam
Part II: ODE Theory

1. Show that the system
ESIIPY
y = —2r-—y—+22zy

has no periodic solutions. What is the asymptotic behavior, as t — oo, of the trajectory starting at
(m,—€*)? (Hint: Choose a,m and n such that V = z™ + ay™ is a Liapunov function.)

2. Consider the system
F=—224+(r—-2)z+7r—1,

where r is a parameter.

(a) Show that there is a bifurcation at r = r, for some r.. Find the value of .. What kind of
bifurcation is it?

(b) Classify the fixed points of this nonlinear system. Give your reasons.




Graduate Group in Applied Mathematics
University of California, Davis
Preliminary Exam
September 25, 2007

Instructions:
* This exam has 3 pages (8 problems) and is closed book.
* The first 6 problems cover Analysis and the last 2 problems cover ODEs.

e Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

» Use separate sheets for the solution of each problem.

Problem 1: (10 points) _
Suppose that f:[0,1] — R is continuous. Prove that
1
lim [ f(x")dx

n—oo 0

exists and evaluate the limit. Does the limit always exist if f is only assumed to be inte-
grable?

Problem 2: (10 points)
Suppose that for each 7 € Z, we are given a real number w,,. For each ¢ € R, define a linear
operator T'(#) on 2z-periodic functions by

neZ neZ

T(t) (Z fneinx) — Z eiﬂ)ntfneinx’

where f(x) =¥ ez fne™ with f, € C.

(a) Show that T(#): L*(T) — L%(T) is a unitary map.
(b) Showthat T(s)T(£) = T(s+¢t) forall s, r € R.

(c) Provethatif f € C*(T), meaning that it has continuous derivatives of all orders, then
T(2) f € C®(T).




Problem 3: (10 points)
Let (X, - llx), (Y,|I-lly), (Z, ] - || z) be Banach spaces, with X compactly imbedded in Y,
and Y continuously imbedded in Z (meaning that: X ¢ Y < Z; bounded sets in (X, || - || x)
are precompact in (Y, || - |ly); and there is a constant M such that || x| ; < M| x| y for every
x € Y). Prove that for every € > 0 there exists a constant C(¢g) such that

Ixlly =ellxllx +C)lxllz  forevery xe X.

Problem 4: (10 points)
Let # be the weighted L2-space

Jé’:{f:lR—»lee""'lf(x)lzdx<oo}
R

with inner product
(f,8)= fR e M F()g(x) dx.
Let T : ## — 7 be the translation operator

(THX) = fx+1).

Compute the adjoint T* and the operator norm || T|.
Problem 5: (10 points)
(a) State the Rellich Compactness Theorem for the space WP (Q) for Q c R”. Recall

that the Sobolev conjugate exponent is defined as p* = n—'i’%, and that there are some
constraints on the set Q.

(b) Suppose that {f,} , isabounded sequence in H'(Q) for Q c k3 open, bounded, and
smooth. Show that there exists an f € H'(Q) such that for a subsequence {fy,}%? |,

fneDfn, — fDf weaklyin L?(Q),

where D = (%l-, 5%, 5%;) denotes the (weak) gradient operator.

Problem 6: (10 points)
Let Q:= B(0, %) < R? denote the open ball of radius % For x = (x1,x2) € Q, let

u(x1, x2) = x1x2 [log (|log(|x])|) — loglog2] where |x| = Vi + 2

2




(a) Show that ue C}(Q).
(b) Show that £¥ € C(Q)) for j = 1,2, but that u ¢ C2(SY).
j

(c) Using the elliptic regularity theorem for the Dirichlet problem on the disc, show that
ue H*(Q).

Problem 7: (8 points)
Write down the general solution for the following two linear dynamical systems. Draw the
phase plane with trajectories, and eigenvectors clearly labeled. Compare the two systems
specifically paying attention to the nature of their eigenvectors and eigenvalues. Explicitly
write the solution to both systems for the initial condition x(0) = 0, y(0) = 1. Sketch the
plot of x(f) on the same axes for each of these solutions.

d

dflx]_ [ -2 1 x
dely)] |1 -2 y
dfx]_ [ -2 1 x
dely] | 0 -2 ¥

Problem 8: (12 points)
Consider the second order dynamical system

X= x[x(1-x)-y]
y= yx—a)
where x 2 0 is the dimensionless population of the prey, y = 0 is the dimensionless popu-
lation of the predator, and a is a positive control parameter.
(a) Sketch the nullclines in the positive quadrant of the x, y plane.
(b) Find the fixed points and classify their (linearized) stability.
(c) Sketch the phase portrait for a > 1. What happens to the predators in this case?
(d) Find the value of a for which a Hopf bifurcation occurs.
(e) Estimate the frequency of the limit cycle oscillations for a near the bifurcation.

(f) Sketch all the topologically distinct phase portraits for0< a < 1.




Fall 2006: PhD Applied Math Preliminary Exam

Instructions:

(1) Ezplain your answers clearly. Unclear answers will not receive credit.
State results and theorems you are using.

(2) Use separate sheets for the solution of each problem.

Problem 1. Let C([0,1]) be the Banach space of continuous real-valued
functions on [0, 1], with the norm || f||o = sup, |f(z)|. Let & : [0,1}x[0,1] —
R be a given continuous function. Let Ty : C([0,1]) — C([0,1]) be the linear
operator given by Tx(f)(z) = fo z,y) f(y) dy.

(a) Show that T} is a bounded operator.
(b) Find an expression for ||T%| in terms of k.

(c) What is ||Tx|| if k(z,y) = z2y* ?

Problem 2. Let X be a metric space.
(a) Define X is sequentially compact.
(b) Define X is a complete metric space.

(c) Prove that a sequentially compact metric space X is complete.

(d) Let B={z : ||z|ls <1} be the unit ball in £2(N). Show that B is not
sequentially compact.

- Problem 3. Give an example of a Banach space X and a sequence (zy)
of elements in X such that Y 7, z, converges unconditionally (converges
regardless of order), but does not converge absolutely (3 oo, |z,| does not
converge). Prove this.

Problem 4. Let f € L2(T), and let (fn)nez be the Fourier coefficient se-
quence of f; here, T := {z€ C : |z|=1}. If (f,) € £1(Z), does it follow
that f is continuous? (In other words, is there a continuous function that is
equivalent to f in L?(T)?) Prove your assertion.




Problem 5. Find all solutions T of the equation 22°%7T = 0 in the space of
tempered distributions S*(R%).

Problem 6. In which of the following cases is the operator A = z'd% acting

on L*([0,1]) symmetric, essentially self-adjoint, self-adjoint? Justify your
answers.

(a) D4 = C0,1]
(the space of continuously differentiable complex-valued functions on
[0,1])

(b) Da={feC"0,1] : f(0)=f(1)}
() Da={feC'0,1] : f(0)=f(1)=0}

Problem 7. Consider the system

. 2 2
T = —y+ azre® Y

Y = x+ ayeg”Q“Ly2
near the fixed point (0,0), where a is a parameter.

(a) Classify the stability of the fixed point (0, 0) in its linearized system.

(b) Classify the stability of the origin in the original nonlinear system. (Hint:
Express the system in polar coordinates, and recall that = =)

Problem 8. Show that the system

T =y
Yy = ——:c—}—y(4—:z:2—4y2)

has at least one closed orbit in the annulus

1<z?+4y2<4.




GGAM PRELIMINARY ExaM
January 3, 2005

Write solutions on the paper provided, putting each problem on a
separate page. Justify all of your mathematics. Print your name
on this exam sheet, and staple it to the front of your finished exam.
Do Not Write On This Exam Sheet.

1. Consider the equation
E+pu(z* —1)i+2z =0, (1)

with parameter p.

(a) Show that equation (1) is equivalent to the system

) = y—g(=) (2)
y(t) = -z,

with g(z) = p(3z® — z).
(b) Consider the function V(x,y) = 5(@% + y?). Let x(t) = (z(t),y(t)) be a

solution of system (2). Calculate the time derivative of V (z(t), y(t)). Describe

the regions where (fT‘t/ is negative and positive. (These regions should depend

on u.)
(c) For which values of u does the fixed point (0,0) change its stability?

(d) For which values of u does the system have a limit cycle? Explain your
answer using the Poincare-Bendixson Theorem.

2. Consider the system

t=zlz(l-2z) -yl y=ylz-2), (3)

where £ > 0 and y € R.

(a) What is the asymptotic behavior, as ¢ — oo, of the trajectory starting at
(2,1)?

(b) What is the asymptotic behavior, as ¢t — oo, of the trajectory starting
at (2, —4)? (Explain your answers.)



3. Suppose that (P,) is a sequence of orthogonal projections on a Hilbert
space H such that

oo

ran P, D ran P, U ran P, = 'H,

n=1

where ran P, denotes the range of P,.

(a) Prove that for every x € M, the sequence (Pnx) converges to z as n — 0o
with respect to the norm on H.

(b) Prove that (P,) does not converge to the identity operator I with respect
to the operator norm on B(H) unless P, = I for some n.

4. If A is a subset of a metric space X, with metric d: X x X — R, define
the ‘distance from A’ function f4 : X — R by

fa(z) = inf d(z,a).

acA

(a) Prove that f, is continuous.
(b) Prove that if A is a closed subset of X, then

A={zeX| fa(z)=0}.

(c) A subset of a metric space is said to be a G if it is a countable intersection
of open sets. Prove that every closed subset of a metric space is a Gj.

5. Suppose that f : [0,1] — R is a function with the property that there
exist constants M > 0, a > 1 such that

If(z) = f(y)| < Mz —y|*  forall 2,y € [0, 1],

Prove that f is a constant.



6. (a) Briefly define a distribution on R, and define what it means for a
sequence (7;,) of distributions to converge.

(b) Show that the following sequence converges in the sense of distributions,
and determine its limit:
T, = sin(nzx).

(c) Show that the following sequence converges in the sense of distributions,
and determine its limit:

Tn =n (51/71 - 5~1/n) .

Here, 4, denotes the delta-distribution supported at a, defined by

(00, @) = ¥(a).

7. (a) Define the subspace H'([0,1]) of L[0, 1] using Fourier series.

(b) Give the definition of the spectrum of a linear operator A (not necessarily
bounded) defined on a (dense linear) domain D(A) in a Hilbert space H.
(c) Let A be the (unbounded) linear operator on H = L?([0, 1]) with domain
D(A) = {ue H'([0,1]) | w(0) = u(1)}, and Au = ;Lu/, where v’ is the
weak derivative of u. Prove that the spectrum of A defined above is the set
of integers.



Analysis Preliminary Exam
Applied Mathematics, September, 2004

Write solutions on the paper provided, putting each problem on a
separate page. Justify all of your mathematics. Print your name
on this exam sheet, and staple it to the front of your finished exam.
Do Not Write On This Exam Sheet.

(1) Consider the first order ordinary differential equation
i=x*— 322+ z, (1)

where z = z(t) is a real valued function of real variable ¢. Recall that a subset
S of R is said to be a positively invariant region for (1) if, whenever z(0) € S,
then z(t) € S for all t > 0. Prove that [0,4] = {z : 0 < z < 4} is a positively
invariant region for (1).

(2) Consider the second order ordinary differential equation
i+1z*=0. (2)

Prove that (2) has no unbounded solutions.

(3) Consider the following equation for an unknown function f : [0,1] — R:

§) = 0@+ [ (@~ 0 Ty + Sim(f()). @

Prove that there exists a Mg > 0 such that for all A € [0,)), and all g €
C([0,1]), (3) has a unique continuous solution.

(4) Let X be a normed linear space, and let X* be its dual.
(a) State the Hahn-Banach Theorem for X.

(b) Use the Hahn-Banach Theorem to prove that if the pair z,y € X has
the property that ¢(z) = ¢(y) for-all ¢ € X*, then z = v.




(5) Suppose that f € H'([a,b]) and f(a) = f(b) = 0. Prove the Poincare
Inequality

[ 1#war < L [ piapas, (@)

(6) Let A: H — H be a bounded linear operator on a Hilbert space H.

(a) Give the definitions of the point, continuous and residual spectrum of
A.

(b) A complex number X is said to belong to the approzimate spectrum
of A if there is a sequence (z,) of vectors in H such that ||z,|| = 1, and
(A—AI)z, — 0asn — oo. Prove that the appoximate spectrum is contained
within the spectrum, and contains the point and continuous spectrum.

(c) Give an example to show that a point in the residual spectrum need
not belong to the approximate spectrum.

(7) Let f, : [0,400) — R be a sequence of continuous, n = 1,2, 3..., and
suppose that there exists a constant ¢ > 0 such that f,(z) > —cfor all z > 0,
n > 1. Prove that, for all n > 1, we have

/oo e h@-gy > eJo e @)z, (5)
0

(Hint: du = e*dz is a probability measure.)



Graduate Group in Applied Mathematics
University of California, Davis

Preliminary Exam
(3 January 2003)

This exam has 2 numbered pages and is closed book. The Analysis portion of
this exam is Problems 1-6. The ODE portion is Problems 7-9.

Problem 1. Let f(z) be a real-valued function from L*(R') and

a= +OO f(z)exp(—2®)dx, B = +OO f(z)z exp(—2?)dx.

a) (5 points) Prove that o? < ﬂfj;o f(z)dx.
b) (5 points) Prove that o? +26% < 7 [*2 f2(x)da.

Problem 2. Calculate the Fourier coefficients of the functions f(z) and g(z) in L?(0,2m)
where

a) (5 points) f(x) = cos®(x),
b) (5 points) g(z) =z — .

Problem 3.

a) (5 points) Prove or disprove that R™ equipped with the usual Euclidean norm is separable
(i.e. it has a countable dense subset). Does the answer depend on the particular choice of
norm in R"?

b) (5 points) Prove that [*°(Z) with the usual sup norm is not a separable space.

n d™(z)

Problem 4. (10 points) Find all non-negative integers n and m such that 2" === is iden-

tically zero, where §(x) is the delta function.

Problem 5. Consider the Hilbert space L*[—1,1].

a) (5 points) Find the orthogonal complement of the space of all polynomials. Hint: Use
the Stone-Weierstrass theorem.

b) (5 points) Find the orthogonal complement of the space of polynomials in 2.



Problem 6. (15 points) Consider the space of all polynomials on [0, 1] vanishing at the
origin with the sup norm. Prove that the space is not complete and find its completion.

Problem 7. Consider the 2-d system

/ /

r=x :—y—l—xQ.

a) (5 points) Show that the system has a saddle point at (0,0) and its stable manifold is the
y-axis.

b) (5 points) Let (z,y) be a point on the unstable manifold and close to (0,0). Write the

y = u(z) and assume
u(z) = Z cra®.

Determine the coefficients ¢, (and thus u(z)) by substituting the expression into the equa-
tions.

c) (5 points) Check that your analytical result produces a curve with the same shape as the
stable manifold shown in the figure.

Problem 8. (10 points) Show that 2/ = y,3’ = —z — 2® has a fixed point at the origin that
is a center (i.e. the Jacobian has purely imaginary eigenvalues). Are the trajectories in a
small neighborhood of the origin closed (i.e. periodic orbits)? Prove your answer.

Problem 9. (10 points) Sketch an argument for the existence of a periodic orbit for the
system
"+ +e(z? -1’ =0

with a small positive parameter e.



Graduate Group in Applied Mathematics
University of California, Davis

Preliminary Exam
(24 September 2003)

This exam has 3 numbered pages and is closed book. Please provide complete
arguments. State or cite by name any major theorems you use. The Analysis
portion of this exam is Problems 1-6. The ODE portion is Problems 7 & 8.

Problem 1. Recall the definition of the Gaussian distribution with variance o2 > 0:
72

202

exp( ), x €R.

1
2\ L) =
P (t) = =5
For f € L'(R) N Cy(R), define

o =va [ W) (V= y) dy.

a) Prove that p; is a fixed point of T.

b) Prove that for all ¢ > 0, there is exactly one fixed point of 7" in L*(R) N Cy(R), say f,
such that || f]|: = c.

c) Let g € L' (R)NCy(R) be a non-negative function. Show that the sequence T™g converges
in L'(R) as n — oo, and find its limit.

Problem 2. Let (#,),>1 be a sequence of non-negative real numbers such that ) -, 32 1.

Let (a,) be a sequence of complex numbers satisfying

Z |an|? < +oo0. (1)

n>1
Define f,, € C([0,1]), by
fulz) = Ztmam sin(mmz)

m=1
Prove that the set
A={faln=>1}

is precompact in C([0, 1]) with the supremum norm.



Problem 3.

a) Let X! be the distributional limit, as € — 0, of the sequence of functions
1
o ={ g

Show that X! is the distributional derivative of the function f(z) = log |x|.

b) Show that the distributional limit, as e — 0, of the following sequence

|z| > €
|z] <€

is X'+ 7mid.

Problem 4. Let h > 0, and consider the following differential-difference initial-value prob-
lem, where u(z,t) and f(x) are 2m-periodic functions of x:

u(x + h,t) — 2u(x,t) +u(x — h,t
e,y = WO =20 ) ule 2 b D),

u(z,0) = f(z).

a) (10 points) Use Fourier series to solve for u(z,t) when f(x) is square-integrable.

b) (5 points) How does the smoothness of u(-,¢) for ¢ > 0 compare with the smoothness of
fE)?

c¢) (5 points) Discuss briefly what happens to your solution in the limit h — 0.

Problem 5.
a) (5 points) Define “orthogonal projection on a Hilbert space”.

b) (10 points) Suppose that P and @Q are orthogonal projections with ranges M and N,
respectively. If PQ) = QP, prove that R = P + ) — P() is an orthogonal projection. What
is its range?

Problem 6.
a) (5 points) Define strong and weak convergence in a Hilbert space.

b) (5 points) Suppose that (x,)7, is an orthogonal sequence in a Hilbert space, meaning
that z,, is orthogonal to x,, for n # m. Prove that the following statements are equivalent:

oo
(i) Z x, converges strongly;
n=1

(ii) Z x, converges weakly;

n=1



o0
(i) )l < oo
n=1

c) (5 points) Give an example to show that if the sequence (z,)$°; is not orthogonal, then
> > |, may converge weakly but not strongly.

Problem 7. Consider the system

¢ = 4p° —4pq
) 2p* — 3¢

a) Show that the function H(q,p) = p* — 2p*q + ¢* is a conserved quantity for this system.
b) Compute the linearization of the system at the fixed point

(¢"p") = (g g)

What type of fixed point is this? Sketch the behavior of the full system in a small neighbor-
hood of the fixed point.

Problem 8. Consider the one-dimensional system

re
1+ 22

Tr=ux+

a) Compute the location of all fixed points as a function of r € R.
b) Plot the phase portrait when r = —2.

c) Plot a bifurcation diagram for the system. At what values of x and r does the bifurcation
occur? What type of bifurcation is it?

d) Describe what would happen to the system’s solution if it starts at = 1/2 and r = —2,
and then r is very slowly increased?” Assume that the system dynamics are much faster than
the change in r.



Graduate Group in Applied Mathematics
University of California, Davis

Preliminary Exam
(3 January 2002)

Problem 1. (5 points) Let V' be a metric space with the property that every
sequence (Zy)k>1 such that

d(aﬁk,azl)<3_’C forl>k>1

is convergent. Prove that V' is complete.

Problem 2. Let f : R —+ R be a smooth, bounded function, and define
1 o 2
u(z,t) = — (e_t:c—l— 1—e2 )e_y/Qd
(z,t) %E/;f Vv y y

where —oco < x < oo and t > 0.

a) (5 points) Show that u(z,t) is a solution of the initial value problem

Up = Ugy — Tlyg —co<r<oo, t>0
u(z,0) = f(z) —o0 <z < oo

b) (5 points) What is the asymptotic behavior of u(z,t) as t — co?

Problem 3. Let H denote a Hilbert space with inner product (-,-). For any
two vectors f, g € H, define the operator f ® g by

(fogv=/[(gv),veH

Let {¢k}k:0,1,2,... be an orthornormal basis for H. For each positive integer
N define the operator Ky by

N-1

Ky = Z@k@)(ﬂk
k=0

1



a) (5 points) What is the dimension of the range of Ky?
b) (5 points) Prove that Ky is a projection operator.

Problem 4. Let {f,} denote a sequence of vectors in the Hilbert space H.

a) (5 points) Define the notion of strong convergence of this sequence to a
vector f € H.

b) (5 points) Define the notion of weak convergence of this sequence to a
vector f € H.

c) (5 points) Give an example to show that a sequence can converge weakly
but not strongly. Be sure to show that your sequence converges weakly but
does not converge strongly.

d) (5 points) Let A be a bounded operator on H and {f,} a sequence of
vectors that converge strongly to f. Prove that {Af,} converges strongly to
Af.

Problem 5. Let A denote a bounded operator on the Hilbert space .
a) (5 points) Define the adjoint operator A*.
b) (5 points) What does it mean for the operator A to be self-adjoint?

c) (5 points) Prove that if A is any eigenvalue of a self-adjoint operator A,
then A is a real number.

d) (5 points) Let A be self-adjoint and A a complex number with nonzero
imaginary part. Define the resolvent operator R,. What can you say about
Ry?

Problem 6. Consider a non-linear autonomous system of ODE’s
x= f(x)

a) (5 points) Define a rest point of this system, and explain in what sense it
corresponds to a solution.

b) (5 points) Give the precise definition of stable and asymptotically stable
rest point.

Problem 7. The orbit of a planet in general relativity follows a trajectory

2



of the ODE
u= —P'(u)

1

where v = r~', r = distance from the planet to the sun (assumed to be point

masses), and
P(u) = —Cu(u — ug)(u — u3)
Here C' > 0 is a constant, and 0 < uy < ug < 0o, are critical values of u.

a) (5 points) Define the energy and sketch the phase portrait, noting the
character of all rest points.

b) (5 points) Show which values of the energy correspond to bounded periodic
orbits.

c) (5 points) Use the phase portrait to argue that any orbit sufficiently close
to the sun, with sufficiently small energy, will fall into the sun (evidence of
a black hole).

Problem 8. Consider the linear system

x= Ax

=7 5)

a) (5 points) Find exp A, and use it to give a formula for the solution set.

b) (5 points) Prove that

where

lim x(¢t) =0

t—+o0

for any solution x(t).



Graduate Group in Applied Mathematics
University of California, Davis

Preliminary Exam
(25 September 2002)

This exam has 3 pages (9 problems) and is closed book.

Problem 1. (10 points) Prove that R' with each of the metrics
(i) p(x,y) = | arctan(z) — arctan(y)|

(ii) p(z,y) = |exp(z) — exp(y)|

is incomplete and find its completion in each case.

Problem 2. (10 points) Let {c¢;}{2°  be the Fourier coefficients of an inte-

grable function f € L'(T") on a unit circle. Find the Fourier coefficients of
the Steklov function

z+h
fle) = 57 [

What can be said about their behavior as h — 07

Problem 3. (5 points) Prove or disprove that C[0,1] with the usual sup
norm is a Hilbert space.

Problem 4. (10 points) Consider a sequence of functions f,(z) = ;o7 X
exp(—na?) in the Schwartz space S(R'). Prove or disprove that it converges
to zero (in the Schwartz space topology) as n — oo.



Problem 5. (10 points) Let A be an eigenvalue of the Fourier transform on
R

(i) Prove that the absolute value of A is one.

(ii) Prove that A* = 1.

Problem 6. (10 points) Consider a convolution with f(z) = W as a

linear operator on L?(R'). Prove that it is a self-adjoint operator and find
1ts norm.

Problem 7. (10 points) Let {ex}32; be a natural orthonormal basis in [*(Z7 ).
Define a sequence of linear operators in {*(Z}) by the formula

Aper =0(n, ke, E=1,2,..., n=1,2,...,

where d(n, k) is the Kronecker symbol (i.e. it is equal to one when n = k
and it is equal to zero otherwise). Prove that

(1) [[An] = 1.

(ii) A, strongly converges to zero as n — oo (i.e. for any vector x one has
A,z —0.)

Problem 8. For each of the equations

(1) ' = re — 42, (i) 2’ = r* — 2?

answer the following questions.

a) (b points) Determine the bifurcation point of r and sketch the different
types of vector field, including the fixed point(s), for r smaller than, equal
to and bigger than the bifurcation point.

b) (5 points) Sketch the bifurcation diagram (i.e. the fixed point(s) versus
r) and indicate the stability of the fixed point(s) on the diagram.



Problem 9. Consider the equation
"+ pu(® — 1)’ +2=0

and answer the following questions.

a) (5 points) Reduce the second order equation to a system of 1-st order
equations by introducing a new variable.

b) (5 points) For the equilibrium point z = 0,2’ = 0 find a Lyapunov
function (i.e. a function which is 0 at the equilibrium but otherwise strictly
positive or negative in a neighborhood of the equilibrium and changes its
value monotonically along any trajectory in that neighborhood).

c) (5 points) Determine the stability of the equilibrium point (your answer
should depend on p). At what value of u does the equilibrium change its
stability?

d) (5 points) What is the range of p for which the system has a stable limit
cycle?



Graduate Group in Applied Mathematics
University of California, Davis

Preliminary Exam
(September 27, 2001)

Problem 1. (10 pts)
State the Riesz Representation Theorem for Hilbert spaces.

Problem 2. (10 pts)

Let T' denote a linear operator on the Hilbert space H. What does it mean
for T to be bounded? Give an example of a bounded operator on H =
L?(—00,00) and give an example of an unbounded (linear) operator on the
same space.

Problem 3. (10 pts)
Define a sequence of functions p, € C([—1,1]) by

1
Pn+1(x):§[pi($)+1_$2] n:071a27--'7

po(z) = 1.

Show that (p,) is a monotone decreasing sequence of nonnegative polynomi-
als. State Dini’s theorem, and deduce that (p,) converges uniformly to the
function f:[—1,1] — R given by

f(@) =1 lal.

Problem 4. (5 pts)
Let X be a metric space with the property that every sequence (z,) such
that

d(z™ ") <2 ™ forn>m

is convergent. Prove that X is complete.



Problem 5. (15 pts)

(a) (5 pts) Let T denote a self-adjoint and compact (sometimes called com-
pletely continuous) operator on the Hilbert space H. (T need not be bounded.)
State the spectral theorem as it applies to the operator T'. Be sure to define
all your symbols. (Think of this as a small essay.)

(b) (5 pts) Let K : L*([0,1]) — L?([0,1]) be the integral operator defined by

Ku(z) = / ke y)u@)dy,  k(y) = min(z,y).

Is this operator K self-adjoint? Is K also compact? Explain why or why not.
(c) (5 pts) Compute the eigenvalues of K defined as above. Show that K is
a positive operator.

Problem 6. (15 pts)
(a) (5 pts) You may assume as given that the oscillator wave functions,

1
or(t) = ————— exp(—a?/2)Hy(x), k=0,1,2,...,

(Hg(z) are the Hermite polynomials) form a complete orthonormal system
of the Hilbert space L? (—oo,00). Explain why the identity

S/

must be satisfied. (Hint: The solution does not require the computation of
difficult integrals!)
(b) (5 pts) For what values of € € R are the sequences

{2}
n n=1

elements of the Hilbert space ¢2?
(c) (5 pts) For what values of ¢ € R are the functions

0 =0
Jc(m):{l/xE : 0<z <1



elements of the Hilbert space L?([0,1])? If you change the value of f at
x = 0, can this change your answer? Explain why.

Problem 7. (15 pts)
(a) (5 pts) Define the potential energy and total energy for the system

"

"= -2+ +1 (%)

(b) (5 pts) Plot the potential energy, being careful with the max/min points.
(c) (5 pts) Use the graph in (b) to construct a phase portrait for solutions
of (x). Justify your diagram.

Problem 8. (20 pts)
Consider the system

—z — ay?
= —x2y
(a) (10 pts) Linearize the system about rest point (0,0), and determine the

stability of this rest point for the linearized system.
(b) (10 pts) Prove that the rest point (0, 0) is stable for this nonlinear system.
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GGAM

PRELIMINARY EXAM Section One (of Two)
Math 119a Page 1
Fall 2000

Problem 1. Find exp(A) in the following cases:
D -2
(i) A= [ 0 -9 ] .

(ii)A:[(l);}. P

} |

Problem 2. Consider solutions to the ODE & = —P'(z), where P(z), the
potential energy, is given in graphical form below. Use the graph of P to
graph the phase portrait for this ODE, (that is, graph the trajectories in the
phase space, the zi-plane), making sure to accurately plot the points a — d.

10
(i) A=|0 0
00

[SE---1




GGAM
Preliminary Exam
Fall 2000 Section One (of Two)
Page 2

Problem 3.(Chaos and the Lorentz Equations) The Lorentz Equations are
given by

= —oz+oy, (1)
= -rz+rr-—y, 2)
2 = zy-—bz, : (3)

where o, 7 and b are positive tonstants. (Lorentz used o = 10, b = 8/3,
r = 28.) Lorentz introduced this equation, (a simplified model for convection
in the atmosphere), in the mid-sixties, and this is recognized as the first sys-
tem of ODE’s for which chaotic behavior could be rigorously demonstrated,
(thereby suggesting that it is very difficult to predict the weather!)

(i) Prove that when 0 < r < 1, there exists only one rest point (0,0, 0), and
all solution trajectories tend to this stable rest point as ¢ — 0o. Prove this by
arul‘mg tho Liapunov stability theorem, and then showing that V(z,y,2) =
4% +y*+ 2% is a Liapunov function when 0 < r < 1. (That is, AV(x(t)) <0
fon (£, 9, 2) # (0,0,0), and thus all solution trajectories head toward the rest
point (0,0,0) as ¢ — 00.) It follows that system (2) goes from predictable to
chaotic as parameter values change from r < 1tor > 1.

(i) One of the main forces that drives the chaotic behavior of the Lorentz
equations is that individual solution trajectories diverge from one another at
an exponential rate, but the volume of any region is exponentially squashed,
under the dynamics. But this wouldn’t be such an interesting set of con-
straints if solution trajectories were unbounded, since then they could just
go off to infinity. Thus, a main step in the analysis of (2) is to prove that
solutions remain bounded for all time. Prove this by showing that solutions
of (2) starting inside the ellipsoid E = r2? + oy + o(z — 2r)? < C, must
remam msnde of E so long as C is large enough so that E contains the ellip-
soid 3+ 2+ -’L; + 2 2 < (Hint: Show that E defines a Liapunov function
that decreases on solutions.)
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GGAM PRELIM QUESTIONS Section Two (of Two)
Fall, 2000 Page 1

Problem 1. Compute the Green’s function for the BVP

wru=f O<z<l,
u(0)=a, w()=),

where f : [0,1] — R is a given continuous function and a, b are given real
constants. Write out the Green’s function representation of the solution .

Problem 2. Let f,g: R — R be given bounded, continuous functions and
A € R Prove that if |A] < 1/2, then there is a unique bounded, continuous
solution % : R — R of the nonlinear integral equation

u@) =3 [ e Hsnfuty) - o) dy = @)

Problem 3. Let (f3), (ga), {hy) be the sequenées of functions in L?(R)
defined by:

_ [n ifo<z<l/n,
fala) = {0 otherwise;

1/n if0<z<n,
0 otherwise;

9n(2)

1 fn<z<n+l,
hn(z) = {0 otherwise.

In each case, determine (with proof) whether or not the sequence converges:
(a) strongly in L?(R); (b) weakly in L(R); (c) in the sense of distributions.

Problem 4. Let A : D(4) ¢ L*([0,1]) — L?([0,1]) be the differential
operator

Au = (a—c)(—" +u)+a"y,
D(A) = {u:[0,1] - C|ue H¥[0,1]), u(0) = u(1) =0},
where @ : [0,1] — R is a given real-valued, twice inuously-differentiable

function, and ¢ € C\ R is a complex constant with nonzero imaginary part.

1



GGAM Prelim Questions Section Two (of Two)
Fall 2000 Page 2

(a) Compute the adjoint A* of A.
(b) If Au = 0, show that

/0 (|u| +luf + |u|’) dr=o0.

Deduce that if a” does not change sign in the interval [0, 1], meaning that a
has no inflection points, then the kernel of A is {0}.

Problem 5. Let @ = {(r,6) | r < 1} be the unit disc in the plane, where
(r,8) are polar coordinates. The boundary of £ is the unit circle T. Let
H C L*(T) be the Hilbert space

={f€L7(T)I/Tf(9)d0=>0}.‘

We define a map N : # — #H in the following way: for f € L*(T), let u(r,6)
be a solution of Laplace’s equation in 2,

1 1
;(ru,),+ e =0 r<l,

such that ug(1,8) = f(6). Then Nf = g where g(6) = u,.(1,6). Thus, N
maps the 9-derivative of the Dirichlet data for u to the Neumann data for .
Prove that N is a well-defined, unitary map on H.

Problem 6. The Wigner distribution W : B* x R* — R of a Schwartz
function ¢ : R* — C is defined by

Wiak) = (21r)"/ o(e-3)e(e+])eva,

where z,k € R".
(a) Prove that

/l e,k dk = ol
(b) Prove that

Wz, k) = #/m«“?(k— ;) ¢(k+§)e'“"dl

W0 = g [ v ds
is the Fourier transform of .

where



.

GGAM Preliminary Examination SEPTEMBER 1999

Explain all your answers unless otherwise instructed. State
precisely or indicate by name the theorems you use in your
arguments. .

1. (a) Prove that
) 1
lim /B: A )ax =41 (0), Vf e S(E)

where B is the complement of the ball of radius ¢ centered at the origin.
~ (b) Find the solution  of the Poisson problem

Au =47 f(x), lxl[i_l:lwu(x) =0

for f € S(R®).
2. Consider the following sequences of functions parametrized by n.
fal®) =&V in 12((0,1)) O]
fo®)  =vme ™, in I*(R) )]
) =mein [2(R?) (3)
fald)  =ne™®,  inIX(R) (€]
Jax)  =nein L3(R2) (s)
fal®) =T, €%, in L2((0,1]) (6)
falz) =€ in [X(R) (7

As n tends to infinity, which sequences converge (a) almost everywhere (E) L%
strongly (c) L*-weakly but not strongly (d) in distribution but not L2-weakly?

3. Consider the following operator A, : D(4;) C L([0, 1]) — L*([0,1]), acting
on complex-valued functions wu, defined by

An=Tm

with the domain

D(4y) = {u € HY[0,1]) : u(0) = u(n)}.



(a) Is A; bounded? self-adjoint? compact? Explain.
(b) Compute the eigenval

and eigenfunctions of A,.
4. (a) Does the Fourier series
1 ones : ’
9(z) = 5
nsgﬂl 2nm
define a function g € L2([0, 1])? Explain.
(b) Consider the following operator A, : L*([0, 1)) — L2([0, 1]} defined by

s = [ o= i, 1< (o),

Is A; bounded? self-adjoint? compact? Explain.
(c) Find the ej lues and ej
in the previous problem)

ions of A. (Hint: compare with A,

5. Which of the following statements are false? You do not need to explain your
answers for this problem.
(a) The dual (as Banach space) of L!([0, 1]) is L=([0, 1).
(b) The dual (as Banach space) of L*([0,1]) is L>([o, 1)).
(c) Dirac’s delta function 8(x) is in L(R).
(d) The Fourier transform is an isometry on I?(R),

(e) The Fourier transform has a complete set of orthonormal eigenfunctions
in LX(R).

1<p<oo.

(f) For all f € L'(R), f(k) = 0 as k — oco.

(g) For all f € LX(R), f(k)'— 0 as k — co. .

(h) Suppose £, > 0 converges point-wise decreasingly to f. Then litty 0 f fofz)dz =
 f(z)dz. ’

(i) Every norm-bounded sequence in L*([0,1]) has a L2strongly convergent
subsequence.

() Every norm-bounded sequence in H*([0, 1]) has a L2-strongly convergent
subsequence,



6 Assume 2(t) = (21 (¢£),22(¢)) satisfies the DE

dar)

_.it—l = 22+ %423,
dxy 2
— = —3

& 1+ (22)

Find the matrix A such that the linearization of this system at (0,0) is given by

7 Compute exp (At) where

ES
i
—
o>
> -
—

for A0,

8 (a) Prove that

is constant along solutions of

(b) Consider the 2nd order ODE

f=—cosz+Lz *)
FmdaﬁrstotdasmlarODEthatdﬁcributhesolutmof(‘) Argnethnt(mgmanl)thnﬁxst
order equation requires the same number of initial

s (*). De
of the scalar 1st order equation are indeed (in general) solutions of (*).

that sok

9Lt A beannxn di it matrix of
Degative real part. Prove that

and that the e}

of A all have

Jimz@) =0
for any solution of



University of California, Davis _ Department of Mathematics

GGAM preliminary exam (Tuesday, 6 January 1998; 3 pages)

State carefully or indicate by name the theorems you use in your
arguments. .

Problem 1. Define three subsets of C([0,1]) as follows:

A = {fec(01))||fz)| <1, forallze[0,1]}
4 = {feC' (O |If@)I<2 foralze(o1)}
A; = {fe€C([0,1]) | f is a polynomial function}

and consider the following three intersections

Bi=A1NA;, Ba=AiNA;3, By=ANANA;

a) Is B, compact, precompact but not compact, or not precompact, consid-
ered as a subset of (C([0,1]), ]| - |lsup) 7

b) Same question for B,.
c) Same question for Bs.

Problem 2. Define two sequences of functions, (f) and (gs), in C([0,1]) as
follows:

falz)
9n(z)

(1+cos2z)'™, n>1

1
1+ 308 2rz)/", 1

a) What are the pointwise limits, f and g, of the sequences (f,) and (gn)
respectively?

b) For each sequence, determine whether the convergence is uniform. Give
proofs!

Problem 3. Consider the following equation for an unknown function f :
[0,1] -+ R:

1@ = o(a)+ [ (e - 4710 o+ Jsn(s6e) ®

1



Prove that there exists a Ao > 0 such that for all A € [0, A), and all g &
€([0,1]), (*) has a unique continuous solution.
Problem 4. Let X be a Banach space.

a) Prove that, for all A € B(X), the following series converges in B(X) with
the standard operator norm:

N |
epr:=ZEA"

n=0

b) Prove that the map exp : B(X) — B(X), as defined in a), is continuous.

Problem 5. Let f € S(R), the Schwarz space of test functions. Consider
the following equation for u € L*(R, dz):

+o0
@)+ vE [ e ) dy= 1)
—o0
Find g such that the solution u of this equation can be expressed as
+00
ue) = [ o))y
—o

(Hint: use the Fourier Transform.)

Problem 6. For any pair of real numbers « and 8 define the function F,g :
R® - R, by
Fap(@) = llz]*(1 + ||=I|)*
a) Let p € (1, +00). For which pairs of o and § does the functional
bosl)i= [Fas@ile)ds, fes@®)
extend to a continuous linear functional on L*(R®,dz)? Prove your answer.

b) The same question as in a) for the cases p=1 and p = co.

Problem 7. Consider the system

dfla | _ z 0
il n]-4[2] 2]

2



with initial condition #,(0) = @, 22(6) = b. Here, a,b,c are real numbers,
and
1 3
=[1 3]

a) Assume ¢ = 0, and (a, b) # (0,0). Explain how the following limits depend
on ¢ and b:
tllpl«x:lo T2 (t)’
m za(t) )
00 71 (2)

1
‘IHEO ?logzz(t).
b) Assume that ¢ # 0. Find all fixed points and discuss their stability.

Problem 8. A ball of unit mass is moving without friction in a potential
well V(z) = 2° — 3z. Recall that the equation of motion is " = ~V'(z), or
=y, =-V(z)

a) Show that H(z,y) = 24 + V(z) is a conserved quantity for this sistem.
Describe the behavior of trajectories by sketching the phase portrait.

b) Assume that 2/(0) = 0, £(0) = a, so that the ball starts at rest at location
a. Determine for which @ is z(¢) a periodic function of ¢.

¢) Consider now the forced equation " = —V*(x) — v, where v > 0. Deter-
mine the smallest « for which periodic motion is no longer possible.

d) Finally, consider the damped equation z" = —V'(x) — bz', where b > 0.
Show that H(z,y) is non—increasing on every trajectory. Then show that
(0,0) is a stable fixed point in this case.



University of California, Davis Department of Mathematics

GGAM preliminary exam (Tuesday, 20 Sept. 1998, 9-12 am; 4 pages)

State carefully or indicate by name the theorems you use in your
arguments.

Problem 1. For each of the following sets of functions, A;~Ay, determine
which are pact, p pact but not pact, and not pr pact, when

considered as a subset of the specified topological spaces. Justify your answer.

a) Ay is the subset of C([0, 1]) with the supremum norm consisting of all f €
C({0, 1)) for which there exists N € N, a, € R, such that f(z) = 3% a,2",
ad ¥ fonl < 1. .

b) Let (fa)2, be a sequence of functions in C([0, 1]), converging uniformly
to f(z) = —zlogz, on [0,1]:
A= {faln21}0{s},
also considered as a subset of C([0,1]) with the supremum norm.
c) Let 7 be a separable Hilbert space and suppose {e,}2., is an orthonormal
basis of H.
As= {Ee“ |n>1}
n+1 = b
considered as a subset of # with its norm topology.
d) The same subset of #,
A=A,
but with the weak topology of the Hilbert space.

Problem 2. Define the following two sequences of functions K2 - R :
(f2)52, given by

. 1

fulz) = {nl/s 1:: <zt <n+ PO
1] else

and (gn); given by

o) = {77 VRSNl <20

1 4



Consider these sequences with each of the topologies given below and deter-
mine whether or not f, — 0, and/or g, — 0. Explain.

a) pointwise

b) uniformly

¢) in L? norm

d) strongly in L5/3(R)

€) weakly in L3/3(R)

Problem 3. Let n > be fixed, and let M,(C) denote the Banach space
of all n x n matrices with complex entries and let 5! = {0,2#) be the unit

circle. Consider the following equation for an unknown function A : [0, 27] —

Ma(C):

AW = 5 (A@F+ B + 5 [ sus-0a0w @)

a) Prove that, for every continuous function B : S* — M,(C), satisfying
sup [IB(#)l <1 ,

$€(0.2m)
there exists a Ao > 0 such that for all A € {—Xg, Xo), (¥) has a unique
continuous solution A : S! — M,(C), satisfying ||A(¢)|| < 1, for all ¢ €
[0, 2).
b) Show that if, in addition, B(g) is Hermitian for all ¢ € [0, 27), then the
solution A(g) is necessarily Hermitian.
Problem 4. Let §, denote the delta distribution at a € R.

a) Prove that following series converges in S*(R) with its usual topology:

$=3 4

nel

b) What is the Fourier transform, $, of ¢, as a tempered distribution? (Hint:
¢ can also quite simply be expressed in terms of delta distributions.)

2 +



Problem 5. Consider the operator L on L*([—x, 7}) defined by
@) = [ sine- 1)) ds

Determine and explain whether L is

a) linear

b) bounded

c) self-adjoint

d) compact

e) Hilbert-Schmidt

f) unitary

g) normal
Problem 6. Compute the norm of the operator L of the previous problem.

Problem 7. Consider the population model:

dz di

G =sl—te—ky), F=ye-ty-oz) (1)
where x,y are the populations of two competing species, and a, b k,o are
positive constants.

a) Suppose ¢ > k > b. Can the two species co-exist? If so, find the equilib-
rium populations corresponding to co-existence.

b) For the same parameters, sketch the phase portrait by drawing all the
fixed points and isoclines. Determine the long term behavior of the trajectory
starting at the initial point (zo, %o}, satisfying a = bzo+kyy and .oz +by > a.

¢) Suppose k = 3,b = 2,0 = 1. Sketch the phase portrait and determine the
long term behavior of the trajectory starting at the initial point (1, 1).

Problem 8. .
a) Which of the following is a Hamiltonian system, which is a gradient sys-

3 +



) tem?
@ 2=y, y=-s+i
(#) ?=—z+y, ¥=z+y.

b) Find the first integral (the Hamiltonian function) for the Hamiltonian
system and the potential function for the gradient system.

Problem 9. Consider the equation

o'+ (32—’ +3=0 2)
where y is a constant.
a) Define y = &’ + g(z) with g(z) = z° — pz. Show that eq. (2) becomes

(1)

y—g(z)
Ve @

—Z.

b) Use the Liapunov function V{(z,y) = 22 +y? to determine for what values
of y is the fixed point (0,0) of equation (3) stable and what values of p is
the fixed point (0, 0) unstable?

c) When (0,0) is unstable, can a trajectory starting near by (0,0) go to
infinity in the long run?

d) For which value of y does the fixed point (0,0) change its stability?
‘What bifurcation does the system undergo when 4 passes through this value
(Explain the special feature of this bifurcation)?



GGAM Preliminary Exam, Winter 97
1. Consider the second order equation
' =1-z+ex® — bz

where 0 < e < 1/4.

(a) Assume that there is no damping, that is, b = 0. Write down the equiv-
alent first order system and show that it is a Hamiltonian system. Classify
its fixed points and sketch the phase portrait.

(b) Keep the assumption that b =0, and let 2(0) = 0, z'(0) = a. Show that
there exists A(e) so that ‘]j_.l;go:c(t) = 00 if and only if @ > A(e). To show how
fast A(e) goes to 0o a8 € — 0, determine the power p for which 213(1) P Ale)
exists.

(¢} Classify the fixed points i > 0.

2. Consider the system

= -2r4+24-z)y
yY=-y+{@d-yz

Let S = {(z,4) : 0 < < 4,0 <y < 4}. Assume that (z(0),y(0)) = (a,b) €
S.
(2) Show that (z(t),y(t)) € Sforallt > 0.
(b} Compute Lim %(t) and tﬁ_ﬁy(t). For which choices of (a,b) is z(¢) in-
creasing for t > 07
(c) Assume that (a,b) is not one of the fixed points. Compute

i 112 = 900)

ey t



3. Coasider the system

'=az+azy
¥Y=ay—zy

For every o € (—00, ), determine the set of fixed points and determine
whether they are asymptotically stable, neutrally stable, or unstable.

4. Let f € C§°(—00,00), the space of real valued infinitely differentiable
functions with compact support equipped with the inner product

(.9 = [ a(@) f()-9(o) do

where g(x) > 0 is C*. Consider the differentiable operator

&
L i=ae) S v 40) U 4 ote) 112
where a(z), b(z), c(z) are C*.
(i) Under what conditions is L self adjoint?

(ii) Under what conditions is L positive definite?
(iif) Under what conditions is L skew adjoint?

5. Let f € Co(—00,00), & continuous function with compact support. Define
a family of functions in C[0,1] equipped with the L., norm by

F={f{{t)=f(t+7): TR}

Show that F is precompact.



6. Let X, Y be a Banach spaces and L : X — Y be a bounded and invertible
operator. Let L, : X — Y be a sequence of bounded and invertible operators
which converge strongly to L, i.e., for all z, ||(L — Ly)z|| — 0 as n — o0.
Suppose there exists an M such that ||| < M for all n. Let = and x,, be
the solutions of L z = f and L, 2, = f. Show that z, — =.

7. Let {en} be an orthonormal basis for a complex Hilbert space H. Let
{An} be a collection of complex scalars. Formerly define a linear operator

Lz=i/\ﬂ(z,en)e»
1

a) Show that L is well defined on a dense subset of H.
b) When is L continuous?

¢) Suppose L is bounded, show it is normal.

d) When is L self adjoint?

e) When does L have a finite range?

f) Prove L is compact iff |A,| — 0.



GGAM PhD preliminary exam, 23 September 1997

State carefully or indicate by name the theorems you use in your
arguments.

Question 1. For each of the following sets of functions, A;—A,, determine
which are pact, p pact but not pact, and not pr pact, when
cosidered as a subset of the specified topological spaces. Justify your answer.

a) A; is the following subset of C({0, 1)) with the supremum norm :

={fec(o,1)if(z)= Za,.x WNeNa, €RY nla] <1}

n=1l

b) Let (f,)s2, be a sequence of functions in C([0, 1}), converging uniformly
0 £(z) = vz, on [0, 1].

={faln21}u{s},
also considered as a subset of C([0, 1]) with the supremum norm.

) Let % be a separable Hilbert space and suppose {e,}32, is an orthonormal
basis of H.

={ea|n21},
considered as a subset of # with its norm topology.

d) The same subset of #,
A= 4,
but with the weak topology of the Hilbert space.

Question 2. Define the following two sequences of functions on the real line:
(fa)3% given by

n? fn<z<n+1/n
fla) = {2 i



and ()7L, given by

i n ifn<z<m
n(z) = SE=
9n{2) {0 else

Consider these sequences with each of the topologies given below and deter-
mine whether or not f, — 0, and/or g, — 0. Explain.

a) pointwise

b) uniformly

¢) in L? norm

d) strongly in Z¥/*(R) -
€) weakly in L3/2(R)

Question 3. Define a linear operator A on the Hilbert space # = I2(N) as
follows:

D(A) = {(zx)%2; € B(N) | only finitely many of the z, are non-zero }
and
Az, 2,...) = (\/izz, \/523, \/‘124, )
a) Show that A is not continuous.
b) Compute A*.

¢) Give a self-adjoint extension of A*A.

Question 4. Consider the equation
F=1+Kf+Mf? 1)

Where X > 0, f : [0,1] — R is continuous, and K is the integral operator
defined by

K@= [ le=3l~ o~ s sy

2



Prove that there esists a constant Ay > 0, such that (1), with 0 < A < A,
has exactly one solution in the set {f € C([0,1]) | 1< f(z) <2, forallz €

{0, 1]}.

Question 5. Let 2 denote the unit square, i.e., 2 = [0,1] x [0,1] C R?,'and
consider the Laplacian with Dirichlet boundary conditions on L*(R2), and call
this operator A.

a) Compute the corresponding Green’s function g : @ x  — R, as a Fourier
series, i.e., find g such that for all f € L*(Q2), the function h defined by

we) = [ o)) dy
belongs to the domain of A and Ah = f.
b) Find a closed expression for g. (Hint : either sum the Fourier series for
9, or use the one-dimensional case.)
Question 6. Show that the differential equation
¥ +3WY +y* =0

has an asymptotically stable zero solution. (Hint: A Lidpunov function is
¥ +2(y'))
Question 7. Consider the system

=2y+1, yY=-z+1
a) Sketch the phase portrait of this system.
b) Compute

L1t
Jlim = A y(s)ds
¢) Take as initial condition the point # = a,y = b. Find
maxy(£)

3



Question 8. Consider the system
d=a—f, f =6 -

a) Find the first integral and draw the phase portrait.
b) Does this system have a simple fixed point?



GGAM Ph.D. PRELIMINARY EXAM
May 20, 1996

1. Suppose that o € C with
el =1.
Define an operator A acting on complex valued functions « by
1du
= Ta
A: D(A) C L*(0,1) - L*(0,1),
D(A) = {u € H'(0,1) u(1) = au(D) } .
(a) Show that A is self-adjoint.
(b) Compute the eigenvalues of A.
2. Let Q be a smooth bounded domain in R¢ with boundary 8Q. Let
f:© = Rand g:6Q — R be given functions. Show that a smooth solution
u of the Dirichlet problem,
—Au= f(z) z€Q,
u = g(x) z €0,

is unique.

3. Are the following statements true or false? Briefly justify your answer.
(2) Let B = {u € R™: |lul < 1} be the closed unit.ball in R®. Then any
continuous function f: B — R is bounded below and attains its infimum.
(b) Let

B= {u(z) :/Dl u(z)?dz < 1}
be the closed unit ball in L*(0,1). Then any continuous functional f : B -+ R
is bounded below and attains its infimum.
(c) Any continuous function f : R® — R which is bounded below attains its
infimum.
(d) Any continuous function f : R® — R such that f(x) — 400 as ||u]| - oo
is bounded below and attains its infimum.

4. Suppose that u € L'(R). Define the Fourier transform @(k) of u(z).
Prove that @ is continuous and that #(k) = 0 as k — co. You can assume
that the space of test functions is dense in L*(R).
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5.. - Consider the system

=g —y-1
¥=ay-2

(2) Find all fixed points and for each of them determine whether it is asymptotically stable,
neutrally stable, or unstable.

(b) Assume that the initial conditions are v(0) = a and y(0) = b with a € (—cc., 1} and
b € (0,0¢). Determine limy_, » 21 (2).

(c) Keep the conditions in (b). Do they imply that x,(£) is a monotone function of ¢ for
t>0?

6... A ball of unit mass is moving in a potential well given by 1'(x} = 22 — 1r*. The equation
of motion then is x” = —V"(z) — bx’, where b > 0 is a constant which measures the strength of
damping.

(a) Assume first there is no energy loss, i.e. b = 0. Sketch the phase portrait of this system.
In particular, identify a pair of heteroclinic orbits.

(b) Assume now that b > 0. Start a trajectory inside the bounded set defined by the two
heteroclinic orbits from (a). Describe the behavior of this trajectory as f — x.

(c) Keep the assumption that b > 0. A non—constant pol\ nomial p(x.2’) is claimed.to be
a constant along trajectories, i.e. p(x(t),z'(t)) = p(x(0).2'(0)) for everv ¢ and every solution
2 = z(t) of the equation. What can you say about this claim?



APPLIED MATHEMATICS
PRELIMINARY EXAMINATION
Winter 1995

Put your answers to questions 1-3, 47, and 8-9 into separate piles. Make
sure your name is on each pile.

1. Two stationary charged particles p; and p; are located at distance 1 from

each other. A third particle p3 is constrained to move along the line segment

joining p; and pa, hence its position is determined by z € (0, 1), the distance

from p1. The equation of motion is determined by the inverse-square law
2" = F(z),

he
‘where 4 B

G-t
Assume that all particles are positively charged {A, B > 0) so that the forces
between them are repulsive.

(a) Write down the equivalent first order system.
{b) Find the equilibrium position and velocity of the particle p3.
(c) Draw the global phase portrait.

F(z)=-—

{(d) Does the linearization of the system around the equilibrium corzectly
predict the system’s local behavior near the equilibrium? Explain your
answer.

(e) What is the behavior of the trajectories as ¢ — oo if a small amount of |
friction is introduced, i.e. E

g" = F(z) — ea,
where € > 0 is small?
2. Consider the system

2 =z(3-2z-y)
¥ =y@2-z-~y)



with initial conditions 2(0) = a, y(0) = b, where 6,b > 0 and (a,b) # (1,1).
Show that the limit
1-y(t)
to0 1 — z(t)
always exists and determine its possible values.

3. Find the fixed points of the following system and for each of them deter-
mine whether it is asymptotically stable, neutrally stable, or unstable.

' =gzy—1
y’ =g y3
4. Define L : Dy, € L*(0,1) - L%(0,1) by

Lu = — () +zu,
Dy, {ueC™0,1] : 4'(0) =u'(1) = 0.} .

(a) Prove that L is formally self-adjoint.

(b) Define an extension L of L which is rigorously self-adjoint. You should
justify your answer briefly, but a detailed proof is not required.

(¢} If X is the smallest eigenvalue of L, prove that

l
0 <A E

5. Two-dimensional Minkowski space M is the vector space R? with an
inner product {-,-) defined by

x,¥) = ~zoy0 + 2191,

x=(z0,71), ¥ = (vo,41)
Is this space a Hilbert space? Why? Let V be a one-dimensional subspace of
M spanned by the vector e = (cos6,sinf), where 0 < 8 < w/2. Determine
the orthogonal complement,

={xeM:{x,y)=0 forally e M},

and draw a picture. Is it always true that M =V & V1?



6. Define the integral operator K : C*[0, +o00} =+ C*[0, +00) by

Ku(z) = oz % dy.

(a) Show that
z
K= 1r/ u(y) dy.
]
Hint: Exchange the order of integration; you can assume that

1
/(; U—ozie = i

(b) Use the result of (a) to deduce that the solution of the integral equation

[ e8nu-10

o given by 1d o i)
u(z) = el A (z [EEa dy.

7. Consider spatially periodic solutions u(z, 1) of the fourth order diffusion
equation,

U = Vitggzg,
u(z,0) = f(z)
u(z +2m, 1) = u(z, t).

Here v is a nonzero constant and z € T where T is the unit circle. Use

Fourier series to find the solution of this problem. You can assume f -
L?(T). Discuss the exi and i of the solution for ¢ > 0.

Consider both v >0 and v < 0.

8. Find a leading order approximation as e — 0+ of the solution y(z;¢€) of
the boundary value problem

e —y +2zy =0,
y(0;e) =1,
y(l;¢) =



9. Consider a simple harmonic oscillator whose frequency w varies slowly in
time,

J+w(etly=0.
Use the WKB method to obtain a leadmg order asymptotic solution as
€ — 0+ which is valid for ¢ = O(1/¢). Let E(ef) be the energy of the
oscillator and define the action by § = Efw. Show that § is asymptotically
eonstant in time.



