
Problem 1 Consider a rigid, flat object, of mass m and length `, attached to a torsional spring of

stiffness ∑ in the presence of wind of speed v (see Fig. 1). The equations of motion are

m`2

4
d 2µ

d t 2 =°∑µ+ vc
`

2
sin(µ)

where c is a drag constant so that vc has units of force. Assume that all constants listed

above are positive (but keep in mind that µ(t ) may be negative).

Side view

Spring

Wind

θ

Figure 1:

(a) Use non-dimensionalization to show that the qualitative behavior of the system is defined

by a single non-dimensional parameter.

(b) Show that there is a conserved quantity.

(c) As wind speed v increases from 0, find a critical value of the non-dimensional parameter

at which a bifurcation occurs, and identify the type of bifurcation.

(d) Sketch the phase portrait at i. a wind speed just below the bifurcation and ii. a wind speed

just after the bifurcation.

Problem 2 Consider the following predator-prey model:

d x
d t

= x
°
x(1°x)° y

¢ d y
d t

= y(x °a)

where x is the (positive) non-dimensional population of prey, y is the (positive) non-dimensional

population of predators, and a is a (positive) non-dimensional parameter.

(a) Sketch the null-clines in the first quadrant, x, y ∏ 0.

(b) Find and classify all fixed points

(c) Find and classify all bifurcations that occur as a varies (assume a > 0).

(d) Show that a stable limit cycle exists for some values of a.
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Problem 3 An annular plate with inner and outer radii a < b, respectively, is held at temperature

B at its outer boundary and satisfies the boundary condition
@u
@r

= A at its inner boundary,

where A,B are constants. Find the temperature if it is at a steady state.

[ Hint: It satisfies the two-dimensional Laplace equation and depends only on r . You can

also use the fact that the Laplace operator can be expressed in the polar coordinate (r,µ) as:

¢= @2

@r 2 + 1
r
@

@r
+ 1

r 2

@2

@µ2 . ]

Problem 4 Let ! be positive, but not an integer multiple of º and consider the following boundary

value problem on the unit interval [0,1]:

f 00+!2 f = g , f 0(0) = 0 = f 0(1).

(a) Find the Green’s function for this boundary value problem.

(b) Discuss what happens if we try this with != 0?
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Problem 5 Let A be a symmetric matrix and let ∏0 be a simple (i.e. multiplicity one) eigenvalue

of A with corresponding eigenvector v0. Derive an expression for the eigenvalue, ∏, up to

order ≤ in the limit of small ≤ to the problem

Av+≤F(v) =∏v

that is ∏0 at leading order.

Problem 6 The van der Pol oscillator,

≤u̇ = v +u ° u3

3
,

v̇ =°u,

exhibits periodic relaxation oscillations. The oscillation exhibits two time scales (a fast and

slow time scale) for small ≤.

Let f (u) = u3/3°u. The following information about f may be helpful:

f 0 (±1) = 0

f (±1) =®2/3

f (±2) =±2/3

(a) Draw the nullclines in the phase plane (uv-plane), sketch the the limit cycle for small

≤, and label the regions of fast and slow dynamics on the limit cycle.

(b) Compute the period of the oscillation at leading order as ≤! 0.

End of the exam.
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Problem 1 Consider the oscillator equation

ẍ +F (x, ẋ)ẋ +x = 0,

where F (x, ẋ) < 0 if r ∑ a and F (x, ẋ) > 0 if r ∏ b with r 2 = x2 + ẋ2 and a < b. Show that
there is at least one closed orbit in the region a < r < b.

Problem 2 Consider the system of ordinary differential equations

d x
d t

= x(x °2y)

d y
d t

= y(2x ° y)

(a) Show that (x, y) = (0,0) is the unique fixed point of the system.

(b) Use linear stability analysis to classify the fixed point at (x, y) = (0,0). What can you
conclude about the stability of (0,0) based on this analysis?

(c) Sketch the phase portrait of the system and describe the stability of (x, y) = (0,0).
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Problem 3 Suppose you are given a string of length L. Suppose you arrange it to lie along a func-
tion, f (x), where f (0) = 0. Of all possible potential arrangements of the string, which one
maximizes the volume enclosed by it, V , when it is rotated about the x-axis?

DO NOT look for a closed form solution. Instead, leave your answer as a differential equa-
tion, boundary conditions, and a sufficient number of constraint equations to allow a clever
person with a computer to find a solution.

Problem 4 A plucked string, fixed at both ends, obeys the differential equation

ut t = c2uxx °aut

with boundary conditions u(0, t ) = u(L, t ) = 0, and initial conditions u(x,0) = f (x) and
ut (x,0) = 0. In these equations, u is the local displacement of the string at position x, and
c is a constant (t is time). When the constant a is zero, this is the wave equation; here, you
will examine the effect of a > 0.

(a) Write the solution to the differential equation.

(b) What happens to the solution as t !1?.

(c) Give a possible physical interpretation of the term aut .
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Problem 5 Consider projectile motion with air resistance. The (dimensional) ODE for x(t ), the
height of the object is

d 2x
d t 2 =° g R2

(x +R)2 ° k
x +R

d x
d t

, (1)

where g is the gravitational constant, R is the radius of the earth, and k is a non-negative
constant related to the air resistence. Suppose an object is launched from the surface (x(0) =
0) at a low velocity d x

d t

ØØØ
t=0

= v0 (with v0 small).

1. Non-dimensionalize Equation (1) by finding appropriate re-scalings of x and t and
define (two) small parameters in terms of your scaling choices. [HINT: Your choice
of scaling should give the familiar physical problem valid when the initial velocity or
displacement is much smaller than R and air resistance is negligible.]

2. Using the non-dimensionalized equations, find the leading order asymptotic expansion
for the solution. [HINT: Your expansion should be in orders of the small parameter you
defined above that is independent of the air-resistance parameter k.]

3. What equation would you need to solve to find the solution to the next highest order in
the small parameter, include initial conditions, but DO NOT solve the equation.

Problem 6 Determine the first terms in the inner and outer expansions for the following boundary
value problem:

≤y 00 ° (2x +1)y 0+2y = 0

with y(0) = 1, y(1) = 0, and ≤ø 1. Construct a first-order uniformly valid expansion for y(x).

End of the exam.
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Problem 1 Suppose a bead, of mass m, slides frictionlessly on a hoop of radius R. If we then
spin the hoop at constant angular velocity ! about an axis parallel to the force of gravity (see
Fig. 1), the bead obeys the following non-linear second order differential equation

d 2µ

d t 2 °!2 sin(µ)cos(µ)+ g
R

sin(µ) = 0

where g is the acceleration of gravity, µ(t ) is the bead’s angular position on the hoop (with
µ = 0 being at the bottom), and t is time.

m

g

ω

θ

bead

hoop

Figure 1:

a) Use non-dimensionalization to show that the qualitative behavior of the system is defined
by a single non-dimensional parameter.

b) Find all fixed points, determine their stability and classify them as a function of that
parameter.

c) Sketch a bifurcation plot (i.e., sketch the fixed points as a function of the parameter,
indicate the stability of the fixed points, and label any bifurcations that occur). Use the
Lyapunov definition of stability for this part.

It may or may not be useful to know that the energy of the system can be written as

E = mg (R °R cos(µ))+ m
2

µ
R2 sin2(µ)+R2

µ
dµ
d t

∂2∂

The Lyapunov definition of stability is that a fixed point is stable if all trajectories starting
sufficiently close to the fixed point remain within an arbitrarily small distance of the fixed
point.
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Problem 2 A solid box, with sides of unequal length, obeys Euler’s equations when tossed in the
air:

I !̇+!£ I!= 0

where, for simplicity, we neglect gravity. In this equation, I is the inertia tensor (defined
below) and ! is the angular velocity vector.

a

b
c

ω
ω

ωx

y
z

Figure 2:

For the box above (Fig. 2), with length a, height b, and width c, the inertia tensor (in Carte-
sian coordinates) is

I =

2

4
m
12 (a2 +b2) 0 0

0 m
12 (c2 +b2) 0

0 0 m
12 (a2 + c2)

3

5

and the corresponding angular velocity vector is

!=

2

4
!x

!y

!z

3

5

For the following, assume a > c > b, and ||!|| = 1.

a) Find all fixed point(s).

b) Use linear stability analysis to classify the fixed point(s), i.e., stable node, unstable node,
center, stable spiral, unstable spiral, saddle.
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Problem 3 Find a planar curve (x, y) = (x(t ), y(t )) that minimizes the following functional:

I =
Z1

0
m

µ
ẋ2 + ẏ2

2
° g y

∂
dt ,

where m, g are positive constants, (x(0), y(0)) = (0,0), and (x(1), y(1)) = (a,0).

[ Physically, this is a problem to find a trajectory of a projectile of mass m that starts at (0,0)
and hits at (a,0) at time t = 1 under gravity. ]

Problem 4 Consider the Regular Sturm-Liouville Problem on the unit interval [0,1]:

d2 f
d x2 +∏ f = 0, f (0) = 0, f (1)+ f 0(1) = 0.

a) Find the eigenvalues and eigenfunctions of this RSL system.

[ Hint: Those eigenvalues are the solutions of some transcendental (also known as secular)
equation. ]

b) Expand the constant function 1 on [0,1] into the series of the eigenfunctions obtained in
Part (a).
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Problem 5 The modified Bessel function In(x) for n an integer has the integral representation

In(x) = 1
º

Zº

0
exp(x cosµ)cos(nµ)dµ.

Find the leading order asymptotic expansion for In(x) as x !1. You may find the following
integrals useful:

Z1

°1
exp(°ax2)d x =

r
º

a
, a > 0; °(x) =

Z1

0
t x°1e°t d t .

Problem 6

a) Show that the all of the solutions to

ü +u +≤u3 = 0, ≤∏ 0

are periodic in time.
[ Hint: One could show that all nontrivial trajectories in the phase plane are closed
curves. ]

b) For ≤ = 0, the period of the oscillation is 2º. Find the leading ≤-dependent correction
to the period in the limit of of small ≤ for solutions that pass through the point

u(t0) = A, u̇(t0)(0) = 0,

where t = t0 is some time.

End of the exam.
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Problem 1 Consider the following system:

Step 1: Take a sheet of paper and hold it in a “U” shape.
Step 2: Place a pen or pencil near the bottom of the “U”, but slightly off to one side.
Step 3: Let go, and watch the pen or pencil move back and forth.

Here’s a sketch of the set-up.

Paper

Pen

x0

Three-quarters view “End on” view

Paper

Pen

When you do this experiment, the horizontal position of the pen (x in the sketch on the right)
is a function of time t , and obeys the following equation (assuming conservation of energy)

ẍ = ° f 0(x)
a(1+ f 0(x))

° f 00(x)
2(1+ f 0(x))

(ẋ)2 (1)

where f (x) is a function that gives the height of the paper (in m) as a function of x (you may
assume it and all of its derivatives are continuous), and a is a constant with units of s2/m.
Note that the dot indicates a time derivative and prime indicates a derivative with respect to
x, which is measured in m.

a) Find all fixed points and determine their stability (your answer should depend on a, f (x)
and/or its derivatives). Note, for this question, use the Lyapunov definition of stability, where
a fixed point is stable if trajectories that start sufficiently close (but not exactly at) the fixed
point remain within some small neighborhood of the fixed point. You may assume that there
is no point at which f 0(x) = f 00(x) = 0.

b) You might expect that the pen will oscillate about a stable fixed point. Find the period of
this oscillation (your answer should depend on a, f (x) and/or its derivatives). Your answer
should include units.
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Problem 2 Suppose you are studying the interaction of two proteins. The concentration of the
first protein is p(t ) and the concentration of the second protein is w(t ). They interact via the
following equations:

ṗ = Ap
p2

K 2
p +p2

°kw p

ẇ = Aw
w

Kw +w
°kw p

In each equation, the first term models the formation of protein, and the second term models
the breakdown of the protein. Concentration is measured in units of number per liter and
time is measured in seconds. The constants Kp and Kw then have units of concentration;
the constants Ap and Aw have units of concentration per second; and k has units of inverse
concentration per second.

a) Suppose that you know Kp /Kw = " (where " is a small number), Aw /(K 2
p k) =Æ/" (where

Æ is of order 1) and Ap /(K 2
p k) = Ø (where Ø is of order 1). Non-dimensionalize the equa-

tions and write them in terms of the appropriate non-dimensional variables and the non-
dimensional constants ",Æ and Ø.

b) Simplify the equations by expanding in " and neglecting all terms of order ".

c) Identify all fixed points and determine their stability. Discuss any bifurcations that may
occur.

d) Sketch a phase portrait of the system. On your plot, be sure to (1) identify and classify
all fixed points, (2) draw all null clines, (3) indicate the qualitative flow direction, and (4)
sketch a few sample trajectories.
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Problem 3 Let L be the differential operator

Lu =
°
1+x2¢u00 °2xu0 0 < x < 1

with boundary conditions Bu = 0 given by u0(0) = 0, u0(1) = 0.

(a) Find the adjoint L§ of L in L2(0,1) and the adjoint boundary conditions B§u = 0.

(b) What are the solutions of the homogeneous boundary value problem Lu = 0, Bu = 0?
What is the dimension of the null space?

(c) What are the solutions of the homogeneous adjoint boundary value problem L§u = 0,
B§u = 0? What is the dimension of the null space?

Problem 4 (a) Let ≠= {(x, y) 2 R2 : °a < x < a, 0 < y < b} be a rectangle. Use separation of vari-
ables to solve the boundary value problem

uxx +uy y = 0 (x, y) 2≠

u(x,0) = 0, u(x,b) = e°x2
,

ux(°a, y) = 0, ux(a, y) = 0.

(b) What is a physical interpretation of this problem? What is the approximate limiting
behavior of the solution as b ! 0?
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Problem 5

The equation for displacement, q(x), of a nonlinear beam, on an elastic foundation and with an
additional small forcing, is

q 0000 °∑q 00+ c2q = ≤sin(ºx), for 0 < x < 1,

∑= 1
4

Z1

0
(qx)2 d x,

q(0) = q 00(0) = q(1) = q 00(1) = 0,

where c is a positive constant. Find a two-term expansion of the solution for small ≤.

Problem 6 The dimensionless equation of motion of a frictionless pendulum is

d 2µ

d t 2 + sinµ = 0.

In the limit of small amplitude (e.g. denote the amplitude of the µ as ≤), the period is 2º to
leading order. Compute the next term in the expansion of the period for small amplitude.

End of the exam.
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Problem 1 Consider the system of ordinary differential equations

d x
d t

= x(1°x2 ° y2)°2y(1+x)

d y
d t

= y(1°x2 ° y2)+2x(1+x).

(a) Use the function V (x, y) = (1°x2° y2)2 like a Lyapunov function to prove the existence
of an asymptotically stable closed orbit.

(b) Is the asymptotically stable closed orbit a limit cycle? Briefly justify your answer.

Problem 2 Consider the system of ordinary differential equations

d x
d t

= x2 ° y

d y
d t

= 2Æx ° y °Ø

with the parameters Æ,Ø> 0.

(a) Find and classify all bifurcations of steady states that occur in the system. (That is,
identify all saddle-node, pitchfork, transcritical, and/or Hopf bifurcations. For any pitchfork
or Hopf bifurcations, you do NOT have to determine whether they are super- or sub-critical).

(b) Plot the stability diagram (i.e., two-parameter bifurcation diagram) for the system in
the Æ,Ø-plane. A codimension-2 bifurcation called a Taken-Bogdonov bifurcation occurs at
Æ= 1/2,Ø= 1/4. Very briefly describe what happens at this point.
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Problem 3 Suppose you are given a string of length L. Of all possible potential arrangements of
the string, which one maximizes the area enclosed by it, A?

Assume (1) that the shape of the string is symmetric; and
(2) that half of the string (of length L/2) can be described by the function f (x), defined for
a ∑ x ∑ b, such that

Rb
a f (x)d x = A/2.

Problem 4 A uniform, isotropic, linear-elastic beam of length L, subject to small transverse dis-
placements has action L ,

L =
ZL

0

≥
°a2 1

2
u2

x +
1
2

u2
t

¥
d x,

where u is the local displacement at position x along the beam, and a is a constant (t is time,
and the equation is non-dimensionalized).

(a) Derive a partial differential equation for the function, u(x, t ), that minimizes the action
L .

(b) Suppose that the beam is fixed at one end (u(0, t ) = 0), and free at the other (ux(L, t ) = 0).
Solve the PDE you derived in part (a) for arbitrary initial displacement (u(x,0) = f (x)) and
zero initial velocity (ut (x,0) = 0).

(c) Find the solution for the case where the beam is struck at the free end (ut (x,0) =
b ·±(x °L), where b is an arbitrary positive constant, and ±(x) is the Dirac delta function).

Note, it may be useful to recall the property
Rb

a f (x)±(x ° c)d x = f (c), if a < c < b.
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Problem 5 Use the WKB method to find an approximate solution to the following problem
8
<

:

"y 00+2y 0+2y = 0
y(0) = 0
y(1) = 1

HINT: Assume y(x) = g (x) f (x) for some function g (x) (that you must determine) to put the
equation into the standard WKB form, namely f 00(x)°q(x) f (x) = 0.

Problem 6 Assuming ∏¿ 1, derive an approximation to the integral

I (∏) =
Z2

°1
(1+x2)e°∏x6

d x.

HINT: You may write your approximation in terms of the Gamma function

°(z) =
Z1

0
xz°1e°x d x.

End of the exam.
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Applied Mathematics Preliminary Exam
(Spring 2016)

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will
not receive credit. State results and theorems you are using.

2. Use separate sheets for the solution of each problem.

Problem 1 Consider the one-dimensional dynamical system

d x

d t
=µx °2x

2 +x
3

where µ 2R is a parameter and x(t ) 2R.

(a) Determine the equilibria of the system and for what ranges of µ they exist.

(b) Determine the stability of the equilibria in (a).

(c) Sketch the bifurcation diagram for this system, using a solid line to denote a branch of
stable equilibria and a dashed line to denote a branch of unstable equilibria. Classify the
bifurcations that occur as µ increases from °1 to 1.

Problem 2 (a) Show that the second order ODE

d
2

x

d t 2 +
µ

d x

d t

∂2

+x = 0

can be put in the Hamiltonian form

d x

d t
= @H

@p
,

d p

d t
=°@H

@x
(1)

by defining

p = e
2x

d x

d t
.

What is H(x, p)?

(b) Sketch the phase plane of the resulting Hamiltonian system (1).
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Problem 3 Suppose a perfectly flexible rope of length 2a with uniform density Ω hangs under
gravity from two fixed points (°b,0) and (b,0) in the x y-plane where b < a and the gravity
points downward (i.e., the negative y direction). Find the shape of this rope, y = y(x), that
minimizes the potential energy

V = Ωg

Z
b

°b

y

q
1+ (y 0)2 dx.

[ Hint: The constraint is of course the arclength of the rope must be 2a. ]

Problem 4 Let f (µ) be the 2º-periodic function such that f (µ) = eµ for °º < µ ∑ º, and let
1X

n=°1
cneinµ be its Fourier series; thus eµ =

1X

n=°1
cneinµ for |µ| <º.

(a) Compute cn , n 2Z, explicitly.

(b) If we formally differentiate this equation, we obtain eµ =
1X

n=°1
incneinµ. But then, cn = incn

or (1° in)cn = 0, so cn = 0 for all n. This is obviously wrong; where is the mistake?
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Problem 5 Find a one-term approximation, that is valid for long time scales, of the solution to the
following differential equation

"
d

2
x

d t 2 +"
d x

d t
+x = cos(t )

for t > 0, with initial conditions x(0) = 0 and d x

d t

ØØØ
t=0

= 0.

2 4 6 10

ε = 0.01

−2

−1

0

1

2

t

x

Figure 1: This is a numerical solution of the equation with "= 0.01 (gray), plotted with my solution
for the one term approximation, valid for long time scales (black).

Problem 6 Friedrichs’ (1942) model problem for a boundary layer in a viscous fluid is

"
d

2
y

d x2 = a ° d y

d x

for 0 < x < 1 and y(0) = 0, y(1) = 1, and a is a given positive constant.

After finding the first term of the inner and outer expansions, derive a composite expansion
for the solution to this problem.
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Problem 1 The SIR model is a simple and sometimes accurate way to describe the spread of a
disease in a population. One variant of the model is given by the following three equations:

dS
d t

= a(I +R +S)°aS °bSI

d I
d t

= bSI °aI ° cI

dR
d t

= cI °aR (1)

where S is the number of susceptible individuals, I the number of infected individuals and R
the number of recovered individuals in the population and t is time.

The parameters are defined as follows:

a is the birth rate and also the death rate. Since these rates are equal, the population maintains
a constant size, R + I +S = N , where N is a constant.

b is the transmission likelihood. When a susceptible and infected individual meet, the sus-
ceptible becomes infected with some probability. The parameter b defines the rate that sus-
ceptible and infected individuals meet and the infection is transmitted.

c is the recovery rate. An infected individual recovers at this rate, and then is immune to the
disease.

a. Using a and N to define your time and population scales, respectively, non-dimensionalize
the three differential equations.

Given the appropriate non-dimensionalization, and using the constraint that the population
maintains a constant size, the equations become

d x
dT

= 1°x °Æx y

d y
dT

= Æx y ° (1+Ø)y (2)

where x is the probability that an individual is susceptible, y is the probability that an indi-
vidual is infected, and the probability that an individual is resistant (z) can be determined
from the constraint x + y + z = 1.

b. Find all fixed points (x§, y§) and determine their stability for all combinations of Æ,Ø> 0.

c. Suppose that Ø = 1. A bifurcation occurs as Æ changes. Classify this bifurcation, and
sketch a phase portrait before and after the bifurcation.
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Problem 2 Consider the following mechanical system.

k

v
0

m

x

Friction

Figure 1: Mechanical system for problem 2.

A block, of mass m, sits on a conveyer belt moving at velocity v0. The mass is attached to a
wall with a linear spring of stiffness k. The position of the mass, x, as a function of time, t ,
obeys the following differential equation

m
d 2x
d t 2 =°kx ° f (ṡ)

where f is the frictional force that the conveyer belt applies to the block and ṡ is the velocity

of the block relative to the belt, ṡ = d x
d t

° v0. This equation can be non-dimensionalized to

d 2X
dT 2 =°X °F

µ
d X
dT

°V
∂

(3)

Suppose that V = 1. Also, suppose that the friction force as a function of relative speed has
the following form

F (x) =
Ω

1+ax : x > 0
°1+ax : x < 0

(4)

a. Perhaps the simplest model of friction is Coulomb friction, which is Eq. 4 with a = 0.
Show that linearization predicts that the unique fixed point, X =°F (°1) = 1, d X /dT = 0, is
a center and explain why this is, in fact, a true center.

b. Show that, as a varies, the fixed point goes from a stable to an unstable spiral (assuming
|a| < 2).

c. It turns out that when the fixed point becomes unstable, a limit cycle appears. This is a
Hopf bifurcation. Is it a subcritical, supercritical or degenerate Hopf? Briefly (in a sentence
or two) explain.
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Problem 3 Define a functional J : X !R by

J (u) =
Zº/4

0

Ω
1
2

(u0)2 + 1
2

u4 +u2
æ

d x

X =
©
u 2C 2([0,º/4]) : u(0) = 0, u(º/4) = 1

™

a. What is the Euler–Lagrange equation for J?

b. Find the function u 2 X that minimizes J .

HINT: It turns out that u0(0) = 1, which may be helpful in evaluating the constants of inte-
gration.

Problem 4 Consider the boundary value problem (BVP)

u00+u = f (x) 0 < x < 2º

u(0) = 0, u(2º) = 0,

for u 2C 2([0,2º]), where f 2C ([0,2º]) is a given function.

a. Show that a necessary condition for the BVP to have a solution is that
Z2º

0
f (x)sin x d x = 0.

b. If a solution of the BVP exists, show that there is a unique solution u such that
Z2º

0
u(x)sin x d x = 0.

c. Write down the set of equations satisfied by the generalized Green’s function G(x,ª) for
this BVP. (You don’t have to solve for G .)

d. Write down the BVP and orthogonality condition that are satisfied by the function

u(x) =
Z2º

0
G(x,ª) f (ª)dª.
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Problem 5 In the relativistic mechanics of planetary motion around the Sun, one comes across the
problem

d 2u
dµ2 +u =Æ

°
1+≤u2¢ ,

where Æ> 0. Here, u = 1/r , where r is the normalized radial distance of the planet from the
sun, and µ is the angular coordinate in the orbital plane. Find a first-term approximation of
the solution u that is valid for large µ for small ≤ that satisfies the initial conditions

u(0) = 1

u0(0) = 0.

Problem 6 Find the leading order composite expansion for small ≤ for the problem

≤2 y 00+≤3
2

x y 0 ° y =°x, for 0 < x < 1

y(0) = 1,

y(1) = 2.
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Applied Math Prelim Examination (Spring 2015)

Instructions.

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not
receive credit. State all results and theorems that you are using.

2. Use separate sheets for the solution of each problem.

1. Consider the following two sets of coupled ODEs.

Set 1 (Eqs. 1)

dx

dt
= �y � x(x2 + y2)

dy

dt
= x� y(x2 + y2) (1)

Set 2 (Eqs. 2)

dx

dt
= �y + xy2

dy

dt
= x� x2y (2)

• Show that, for both sets of ODEs, linear stability predicts that the fixed point (x = 0, y = 0)
is a center.

• For one set of ODEs, the fixed point (x = 0, y = 0) is, in fact, a stable spiral. Which one? Is
it possible for the linearized equations to correctly predict the stability of the fixed-point?
Why or why not?

• For one set of ODEs, the fixed point (x = 0, y = 0) is, in fact, a center. Which one? Show
that, for this set of ODEs, closed orbits exist.

2. Consider the following ODE

dx

dt
= x(x� a) + b (3)

• Sketch bifurcation diagrams for 1) b = 0; 2) b = "; and 3) b = �", where " is a small,
positive constant.

(On your bifurcation diagram, indicate stable fixed points with a solid line, unstable fixed
points with a dashed line and label all bifurcations).

• Sketch a stability diagram.

(Recall that a stability diagram will have a and b as axes, and will indicate regions where
there are di↵erent numbers of fixed points).

1



3. Consider waves in a resistant medium that satisfy the problem

utt =uxx � µut, for 0 < x < ⇡

ux(0, t) = 0, ux(⇡, t) + u(⇡, t) = 0,

u(x, 0) =�(x), ut(x, 0) =  (x),

where µ > 0 is a constant. Write down the Fourier series expansion of the solution.

4.
(a) Show that Z x

a

Z s

a
f(t)dtds =

Z x

a
(x� t)f(t)dt.

(b) Express the linear second order ODE,

y00 + ↵y0+c2y = 0.

y(0) = 0, y0(0) = 1,

as an integral equation of the form

y(x) = h(x) +

Z x

0
K(x, t)y(t)dt.

Determine the functions h(x) and K(x, t)?
(c) What is the asymptotic behavior of y (as x ! 1) as a function of the sign of ↵?

5. Find the the first two terms in the asymptotic approximation of the integral
Z 1

0
ex[t(1�t2)] dt.

in the following two limits: (a) x ! �1 and (b) x ! 1. (Hint. Use two di↵erent methods to
study the cases (a) and (b).)

6. The equation of motion for a pendulum of length L is

d2✓

dt2
+

g

L
sin(✓) = 0 ,

where ✓(t) is the angle measured from the downward vertical direction, and g is the acceleration of
gravity. For small initial data,

✓(0) = ✏⌧ 1,
d✓

dt
(0) = 0

use the method of multiple scales to calculate the first two terms in the asymptotic expansion (in
✏) of the frequency of the pendulum. You will need to introduce the slow time scale T = ✏2t.



Applied Mathematics Preliminary Exam (Fall 2015)

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will
not receive credit. State results and theorems you are using.

2. Use separate sheets for the solution of each problem.

Problem 1 Consider the system

ẋ =°y °x3,

ẏ = x5.

(a) Is the equilibrium (x, y) = (0,0): (i) linearly stable; (ii) linearly asymptotically stable; (iii)

hyperbolic? What do your answers imply about the nonlinear stability of the equilibrium?

(b) Find a Liapunov function for the system of the form

V (x, y) = Ax6 +B y2.

What can you conclude about the nonlinear stability of (0,0) from the Liapunov function?

Problem 2 Consider the discrete dynamical system with iterates xn given by the map

xn+1 =°µxn °x3
n ,

where µ is a real parameter.

(a) Find the fixed points of the system as a function of µ and determine their linearized

stability.

(b) What kind of bifurcation occurs at xn = 0 as µ increases through µ= 1?

(c) If xn is small and µ= 1+≤ is close to 1, show that

xn+2 º (1+2≤)xn +2x3
n ,

after neglecting smaller terms. Determine whether the bifurcation in (b) is subcritical or

supercritical.

Problem 3 Find among all continuous curves of length ` in the upper half-plane of R2
passing

through (°a,0) and (a,0), the one that, together with the interval [°a, a], encloses the largest

area. Then, compute the maximum area too.

[Hint: You may want to use the symmetry of the problem to your advantage! Also, note

that the length of the curve ` does not include the length of the interval 2a on the horizontal

axis.]

1



Problem 4 Consider a simple rectangular domain ≠ = {(x, y) 2 R2 |0 < x < a, 0 < y < b} with

a > b, and the simple heat equation with the following initial and boundary conditions:

8
>>>>>>>>><

>>>>>>>>>:

@u
@t

= @2u
@x2 + @2u

@ y2 for (x, y, t ) 2≠£ [0,1);

@u
@x

(0, y, t ) = @u
@x

(a, y, t ) = 0, on 0 ∑ y ∑ b, t 2 [0,1);

@u
@y

(x,0, t ) = @u
@y

(x,b, t ) = 0, on 0 ∑ x ∑ a, t 2 [0,1);

u(x, y,0) = f (x, y), on (x, y) 2≠.

(a) Write down the general solution of this problem as a double Fourier series. [Hint: Use the

separation of variables.]

(b) Identify the spatial modes (i.e., Fourier basis functions involving only (x, y) variables, not t)

corresponding to the three lowest frequencies.

(c) Determine the solution of the above initial and boundary value problem in the case of f (x, y) ¥
c = a real-valued constant.

Problem 5 Consider the following regular Sturm-Liouville problem (RSLP):

(
f 00+!2 f = g 0 ∑ x ∑ 1;

f 0(0) = 0 = f 0(1),

where !> 0 is not an integer multiple of º.

(a) Find the Green’s function for this RSLP.

(b) What happens if we try this with != 0?

Problem 6 Find a one-term approximation, valid to order ", of the solution to the following dif-

ferential equation

"
d 2 y
d x2 + y

µ
d y
d x

+3
∂
= 0

for 0 < x < 1, with boundary conditions y(0) =°1 and y(1) = 1.

It might be useful to know that

Z
1

°0.5x2 +a
d x =

r
2
a

tanh°1

√

x

r
1

2a

!

+b

where a is a positive constant and b is a constant.

It also might be useful to know that tanh is an odd function and that limx!1 tanh(x) = 1 and

limx!°1 tanh(x) =°1.

2
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Figure 1: This is a numerical solution of the equation with "= 0.05 (gray), plotted with my solution

for the one-term approximation (black).
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GGAM 207 Preliminary Exam (Spring 2014)

Instructions

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not
receive credit. State results and theorems that you are using.

2. Use separate sheets for the solution of each problem.

Problem 1 Consider

d x
d t

= x(a °x ° y)

d y
d t

= (y °2a)(x ° y)

(a) Find all the equilibrium points.

(b) Find the linear (in)stability of each equilibrium point as a function of a.

(c) Sketch the phase portrait for representative values of a.

(d) Sketch the bifurcation diagram in the (a, x)-plane.

Problem 2 Find the shortest distance between two points (a,b) and (c,d) in R2
using the Calculus

of Variations.

[Hint: Consider a curve (x(t ), y(t )), 0 ∑ t ∑ 1 with (x(0), y(0)) = (a,b) and (x(1), y(1)) =
(c,d). ]

Problem 3 Consider the following regular Sturm-Liouville problem:

(
(x f 0)0+∏x°1 f = 0 1 ∑ x ∑ e;

f (1) = f (e) = 0.

(a) Find the eigenvalues and normalized eigenfunctions of the above RSL problem. [Hint: Convert

this into a simpler RSL problem using the change of variable of x.]

(b) Expand the function g (x) ¥ 1 in terms of these eigenfunctions.

Problem 4 Find the leading order uniform approximation to the solution y(x) of

≤y 00 ° (1+x)2 y 0+ y = 0, y(0) = 1, y(1) = 0

in the limit ≤ # 0+
. [Hint: boundary layer theory. ]

1



Problem 5 Use the method of stationary phase to find the leading order approximation, as x !1,

of Z1

0
ei xt 2

d t .

Problem 6 A wave h of single frequency ! in a medium of variable speed c(x) > 0 satisfies

d
d x

∑
c2(x)

dh
d x

∏
+!2h = 0.

(a) What is the condition under which the WKB method produces a good approximation? Under

this condition, compute the WKB approximation of h up to second order.

(b) Suppose c(x) ! c± as x !±1. What are the wavelengths as x !±1? Let h+ = limx!1 |h(x)|
and h° = limx!°1 |h(x)|. With the WKB approximation, determine h+ in terms of c± and

h°.
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Applied Math Prelim Exam (Fall 2014)

Instructions.

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not

receive credit. State all results and theorems that you are using.

2. Use separate sheets for the solution of each problem.

1. Consider the mechanical system pictured below. A particle attached to a spring, of rest length

1, slides along a rigid rod. The rigid rod is situated a distance h and at an angle ✓ from the surface

to which the spring is attached.

h

x

θ

Figure 1. A mechanical system.

Assuming that damping is large, the di↵erential equation that governs the particle’s position is

of the form

dx

dt
=

 
1p

h2 + 2xh sin(✓) + x2
� 1

!
(x+ h sin(✓)) .

There are two parameters in the equation, ✓ and h. Sketch a bifurcation diagram in h for the

case where ✓ = 0. Then, sketch a bifurcation diagram in ✓ for the case where h = 1+ " (where " is

an arbitrarily small, but non-zero, positive number). Finally, sketch a stability diagram in h and

✓, and find an equation for the boundaries between the phases. In all of your answers, assume that

h � 0 and �⇡/2 < ✓ < ⇡/2.

2. A generic conservative, one degree-of-freedom mechanical system obeys the following di↵erential

equations

ẋ1 = x2 ẋ2 = �g(x1)

Suppose that there is a local, isolated minimum of the potential energy function V (x1) =
R x1

0 g(x1)
at x⇤1. Show that this minimum at x⇤1 corresponds to a stable equilibrium at x1 = x⇤1, x2 = 0. You

may assume that g is C1
.

Note. Recall that a fixed point x̄ is asymptotically stable if all nearby trajectories converge to x̄
as time t ! 1; it is Lyapanov stable if nearby trajectories remain close to x̄ for all time. In this

problem, by “stability,” we refer to either type.

1



3. Find the path between (x1, y1) and (x2, y2) which a particle sliding without friction and under

constant gravitational acceleration will traverse in the shortest time. You may assume that the

particle is released from (x1, y1) at rest and hence conservation of energy implies that

1

2
mv2 +mgy = mgy1.

4. Determine the Green’s function associated with the BVP

x2y00 � xy0 � 3y = x� 3, y(1) = 0, y(2) = 0,

and give a solution to the BVP.

5. Find the leading order approximations in the limits x ! 1 and x ! �1 of
Z ⇡

0
ex sin(t) dt .

6. For 0 < ✏ ⌧ 1 and k(✏x) > 0, 8x 2 R, with k(✏x) ⇠ O(1), consider the following two second

order ODEs:

d

dx


1

k(✏x)2
dh1
dx

�
+ h1 = 0 (1)

1

k(✏x)2
d2h2
dx2

+ h2 = 0 . (2)

Equation (1) describes the amplitude h1(x) of a wave in a medium with varying wave speed, while

equation (2) describes the amplitude h2(x) of a harmonic oscillator with varying frequency.

Compute the WKB approximation (up to O(✏), i.e., two terms in the asymptotic expansion) for

both equations (1) and (2). Furthermore, assuming that

lim
x!�1

k ! k� and lim
x!1

k ! k+ ,

and that

lim
x!�1

|h1(x)|
2
= 1 and lim

x!�1
|h2(x)|

2
= 1,

determine the limits

lim
x!1

|h1(x)|
2
and lim

x!1
|h2(x)|

2 .



Spring 2013: PhD Applied Math Preliminary Exam

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Un-
clear answers will not receive credit. State results and theorems you are
using.

2. Use separate sheets for the solution of each problem.

Problem 1. Consider the 2⇥2 system of ODEs, where a, b are real constants,
✓

ẋ
ẏ

◆
=

✓
�y
x

◆
+ a(x2

+ y2)

✓
x
y

◆
+ b(x2

+ y2)

✓
�y
x

◆
.

(a) Linearize the system at the origin. Classify the equilibrium of the lin-

earized system and determine its linearized stability.

(b) Write the system in polar coordinates, sketch the phase plane, and de-

termine how the nonlinear stability of the origin depends on (a, b).

Problem 2. Consider the following initial-value problem for an infinite-

dimensional system of ODEs for real-valued functions {x1(t), x2(t), x3(t), . . . }

dxn

dt
= n2x3

n, xn(0) = cn, n = 1, 2, 3, . . . .

(a) Solve for xn(t).

(b) If
P1

n=1 n
2c2n  1, show that a solution exists in some time interval

|t| < T , and give an estimate for the minimal existence time T > 0.

(c) If
P1

n=1 c
2
n  1, show that a solution need not exist in any interval |t| < T ,

however small one chooses T > 0,.

Problem 3. Let

L = � d

dx

✓
p(x)

d

dx

◆
+ q(x)

where p, q are smooth, real-valued functions on on a  x  b and p(x) > 0.

(a) Define the Green’s function G(x, ⇠) for the regular Sturm-Liouville prob-

lem Lu = f for a < x < b, with u(a) = 0, u0
(b) = 0.

(b) Show that G is symmetric i.e. G(x, ⇠) = G(⇠, x), and give a physical

interpretation of this symmetry.

1



Problem 4. Let X = {u 2 C2
([1, 2]) : u(1) = 0, u(2) = 1} and define the

functional J : X ! R by

J(u) =

Z 2

1

p
1 + (u0)2

x
dx.

(a) Write down the Euler-Lagrange equation associated with J .

(b) Solve the Euler-Lagrange equation to find the minimizer of J on X.

Problem 5. Consider a vibrating string that is initially at rest and is sub-

ject to a spatially dependent, time-periodic external force with frequency !.
Suppose that the displacement u(x, t) satisfies

utt � c2uxx = A sin

⇣⇡x
L

⌘
sin (!t) 0 < x < L, 0 < t,

u(0, t) = 0, u(L, t) = 0, 0  t

u(x, 0) = 0, ut(x, 0) = 0, 0  x  L.

where A 6= 0 is the amplitude of the external force.

(a) Solve this IBVP for u(x, t).

(b) For what values of ! is the solution also periodic in time?

Problem 6. Let ⌫ > 0 and �1 < U < 1 be constants, and consider the

following PDE with boundary conditions at x = ±1:

ut + uux = ⌫uxx, �1 < x < 1, 0 < t,

u(x, t) ! U as x ! �1, u(x, t) ! 0 as x ! 1.
(1)

(a) If x, t, and u have dimensions of length, time, and velocity, respectively,

show that this problem is dimensionally consistent. Determine the dimen-

sions of ⌫ and U , and use ⌫ and U to nondimensionalize the problem.

(b) Consider traveling wave solutions u = u(x � ct) of (1). What can you

say using dimensional analysis about the speed c and a typical width L of a

traveling wave?

(c) Find a first-order ODE for the traveling wave profile u = u(z), where
z = x � ct. Show that traveling waves exist if U > 0 but not if U < 0, and

verify the results of the dimensional analysis.

2



GGAM Prelim Questions - Fall 2013

Instructions:

• All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive
credit. State results and theorems that you are using.

• Use separate sheets for the solution of each problem.

1. Consider the second order ODE which describes the height, h(x), of a wave in a medium with varying wave
speed

d 2h
d x2 +k2(x)h = 0

where k(x) is the local wavenumber

k(x) = k1 + (k2 °k1)tanh(x/L), 0 < k1 < k2.

(a) Non-dimensionalize the system by using L to measure length.

(b) For L ¿ 1, write down the first two leading order (i.e. eikonal and transport) equations for the WKB
approximation of h(x) (Do this by considering a general form of k(x) - you need not substitute the
particular k(x)).

(c) Suppose the wave profile is asymptotically

h(x) = Aei k1x for x !°1.

Solve the WKB equation(s) to determine the asymptotic profile |h(x)| for x !1.

2. The function y(x;≤) satisfies
≤y 00+

p
x y 0+ y = 0 in 0 ∑ x ∑ 1

with boundary conditions y(0) = 0, and y(1) = 1. Find the matched asymptotic (inner and outer) solutions.

3. The small, centrally symmetric vibrations of a stretched uniform circular membrane, fixed round its perime-
ter, are approximately described by the equations

8
><

>:

@2u
@ t 2 = a2

µ
@2u
@r 2 + 1

r
@u
@r

∂
, 0 ∑ r ∑ R, t ∏ 0;

u(R, t ) = 0, t ∏ 0.

Here R is the radius of the membrane, u(r, t ) is the transverse displacement of a point distant r from the
center of the membrane at time t , and a is a positive constant.

(a) Separate variables to obtain a singular Sturm-Liouville system.

(b) Find the eigenvalues of this system in terms of the zeros of the Bessel function J0, and write down the
corresponding eigenfunctions.

1



4. Consider the following regular Sturm-Liouville (RSL) problem:
(

f 00+∏ f = 0 0 ∑ x ∑ `;

f 0(0) = f (`) = 0.

(a) Find the eigenvalues and normalized eigenfunctions of the above RSL.

(b) Let S = span{¡1,¡2}, the subspace of L2(0,`) consisting of all possible linear combinations of the first
two eigenfunctions ¡1,¡2 of the above RSL. Find the best linear approximation in S to the function
g (x) = `2 °x2 in the L2 sense.

5. Consider the system

d x
d t

= ax + y °x f (x2 + y2)

d y
d t

=°x +ay ° y f (x2 + y2)

where a is real, f is continuous, f (0) = 0 and f (u) ∏ u1/2.

(a) Show that the origin is the only equilibrium point and determine its linear stability.

(b) Using the Poincare-Bendixson theorem, show that there exists a stable limit cycle if a > 0.

(c) Consider the special case with f (u) = u1/2 for all r ∏ 0 with a > 0. Find the limit cycle explicitly.

6. For the solar system, Einstein’s General Relativity can be viewed as a small perturbation to the regular
Newtonian theory of gravity. The orbit of a planet going around the sun can be described in terms of the
polar coordinates by r (µ) where r is the distance from the planet to the center of mass of the system and µ
is the angle of the planet in its orbit. In General Relativity, r (µ) is approximately governed by the equation

d 2r
dµ2 + r = 1

L
+≤Lr 2, 0 < ≤ø 1

where L is related to the angular momentum of the planet and ≤ is a small positive parameter representing
the deviation from the Newtonian theory. When ≤= 0, this is the equation for Newtonian gravity.

(a) Find the equilibrium points and classify their stability for ≤> 0.

(b) Find the limits of the equilibrium points as ≤! 0.

(c) For ≤ > 0 sketch the phase portrait (in the half plane r ∏ 0) and identify the region where there are
periodic solutions in µ.

2









Fall 2012: PhD Applied Math Preliminary Exam

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Un-
clear answers will not receive credit. State results and theorems you are
using.

2. Use separate sheets for the solution of each problem.

Problem 1. Consider the one-dimensional discrete dynamical system

xn+1 = µe
xn , n = 0, 1, 2, . . .

where xn 2 R and µ is a real parameter.

(a) Describe qualitatively how the the fixed points of the system change as
µ increases from �1 to 1 and determine their stability.

(b) What types of bifurcation occur when there is a change in stability of
the fixed points?

Problem 2. Consider the 3⇥ 3 system of ODEs

ẋ1 = x2, ẋ2 = �x1, ẋ3 = 1�
�
x
2
1 + x

2
2

�

(a) Show that trajectories of the system in phase space {(x1, x2, x3) 2 R3}
lie on the cylinders

x
2
1 + x

2
2 = c

2 (1)

where c � 0 is a constant.

(b) Sketch the trajectories on the cylinder (1) for: (i) c = 0; (ii) 0 < c < 1;
(iii) c = 1; (iv) c > 1.

(c) Does the system have any equilibria? Does it have periodic solutions?
Why doesn’t your answer contradict the Poincaré- Bendixson theorem?

Problem 3. Compute the Green’s function for the boundary value problem

u
00 + u = f(x) 0 < x < 1,

u
0(0) = 0, u(1) = 0,

and write out the Green’s function representation of the solution.

1



Problem 4. Suppose u(x) satisfies the following boundary value problem
on [�1, 1]

Lu = f(x) � 1 < x < 1,

u(�1) = 0, u(1) = 0.
(2)

where f : [�1, 1] ! R is a given smooth function and

Lu = u
00 + xu

0 + 3u.

(a) Find the formal adjoint L⇤ of L and the adjoint boundary conditions.

(b) Verify that v(x) = 1�x
2 is a solution of the homogeneous adjoint problem

and derive a necessary condition that f(x) must satisfy if (2) is solvable.

Problem 5. (a) Suppose that 0 < ✏ ⌧ 1 is a small positive parameter. Use
the method of matched asymptotic expansions to construct leading order
approximations

x = x0 +O(✏), y = y0 +O(✏) as ✏ ! 0+

of the solution x(t; ✏), y(t; ✏) of the initial value problem

ẋ = �xy, ✏ẏ = x
2 � y, x(0) = x0, y(0) = y0

that are valid for times of the order ✏ and times of the order 1.

(b) Sketch the phase plane of this system. How do solutions behave as
t ! +1?

Problem 6. (a) Find all separable solutions u(x, t) = F (x)G(t) of the
wave equation on the interval 0 < x < 1 subject to homogeneous Dirichlet
boundary conditions:

utt � uxx = 0 0 < x < 1

u(0, t) = 0, u(1, t) = 0.

(b) Consider a Dirichlet problem for the wave equation on a rectangle of sides
length 1 and T > 0,

utt � uxx = 0 0 < x < 1, 0 < t < T,

u(x, 0) = f(x), u(x, T ) = g(x) 0  x  1,

u(0, t) = h(t), u(1, t) = k(t) 0  t  T,

where f, g : [0, 1] ! R and h, k : [0, T ] ! R are given functions. Suppose
that this problem has a solution. Show that solutions are unique if T is
irrational and non-unique if T is rational.
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Graduate Group in Applied Mathematics

University of California, Davis

Preliminary Exam

March 24, 2011

Instructions:

• This exam has 4 pages (8 problems) and is closed book.

• The first 6 problems cover Analysis and the last 2 problems cover ODEs.

• All problems are worth 10 points.

• Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

• Use separate sheets for the solution of each problem.

Problem 1: (10 points)

Let≠= (0,1), the open unit interval in R, and consider the sequence of functions fn(x) =
ne

°nx
. Prove that fn 6* f weakly in L1

(≠), i.e., the sequence fn does not converge in the

weak topology of L1
(≠).

(Hint: Prove by contradiction.)

Problem 2: (10 points)

Let ≠ = (0,1), and consider the linear operator A = ° d
2

d x2
acting on the Sobolev space of

functions X where

X =
©
u 2 H 2

(≠) | u(0) = 0,u(1) = 0
™

,

and where

H 2
(≠) =

Ω
u 2 L2

(≠)

ØØØ
du
dx

2 L2
(≠) ,

d
2u

d x2
2 L2

(≠)

æ
.

Find all of the eigenfunctions of A belonging to the linear span of

{cos(Æx),sin(Æx) | Æ 2R} ,

as well as their corresponding eigenvalues.

1



Problem 3: (10 points)

Let≠= (0,1), the open unit interval in R, and set

v(x) = (1+| log x|)°1
.

Show that v 2 W 1,1
(≠) and that v(0) = 0, but that

v
x
62 L1

(≠). (This shows the failure of

Hardy’s inequality in L1
.) Note that W 1,1

(≠) =
Ω

u 2 L1
(≠)

ØØØ
du
dx

2 L1
(≠)

æ
, where

du
dx

de-

notes the weak derivative.

Problem 4: (10 points)

Let f (x) be a periodic continuous function on Rwith period 2º. Show that

f̂ (ª) =
1X

n=°1
bnøn± in D0

, (1)

that is, that equality in equation (1) holds in the sense of distributions, and relate bn to

the coefficients of the Fourier series. Note that ± denotes the Dirac distribution and øy is

the translation operator, given by øy f (x) = f (x + y).

(Hint: Write f (x) =
1X

n=°1
cne

inx
with convergence in L2

(0,2º) and where the coefficients

cn = 1

2º

Z
2º

0

e
°inx f (x)dx.)
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Problem 5: (10 points)

Let f (x) be a periodic continuous function on R with period 2º. Given ≤ > 0, prove that

for N <1 there is a finite Fourier series

¡(x) = a0 +
NX

n=1

[an cos(nx)+bn sin(nx)] (2)

such that

|¡(x)° f (x)| < ≤ 8x 2R .

This shows that the space of real-valued trigonometric polynomials onR (functions which

can be expressed as in (2)) are uniformly dense in the space of periodic continuous func-

tion on Rwith period 2º.

(Hint: The Stone-Weierstrass theorem states that if X is compact in Rd
, d 2 N, then the

algebra of all real-valued polynomials on X (with coordinates (x1, x2, ..., xd )) is dense in

C (X ). )

Problem 6: (10 points)

For Æ 2 (0,1], the space of Hölder continuous functions on the interval [0,1] is defined as

C 0,Æ
([0,1]) = {u 2C ([0,1]) : |u(x)°u(y)|∑C |x ° y |Æ , x, y 2 [0,1]} ,

and is a Banach space when endowed with the norm

kukC 0,Æ([0,1]) = sup

x2[0,1]

|u(x)|+ sup

x,y2[0,1]

|u(x)°u(y)|
|x ° y |Æ .

Prove that the closed unit ball {u 2 C 0,Æ
([0,1]) : kukC 0,Æ([0,1]) ∑ 1} is a compact set in

C ([0,1]).

(Hint: The Arzela-Ascoli theorem states that if a family of continuous functions U is

equicontinuous and uniformly bounded on [0,1], then each sequence un in U has a uni-

formly convergent subsequence. Recall that U is uniformly bounded on [0,1] if there

exists M > 0 such that |u(x)| < M for all x 2 [0,1] and all u 2 U . Further, recall that U is

equicontinuous at x 2 [0,1] if given any ≤> 0, there exists ±> 0 such that |u(x)°u(y)| < ≤
for all |x ° y | < ± and every u 2U .)
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Problem 7: (10 points)

Consider the system of ordinary differential equations

dx
dt

=°x(y +1)

dy
dt

= 1°x2 ° y2

(a) Show that (x, y) = (0,1) and (0,°1) are fixed point of the system. Linearize the system

about the fixed points (0,1) and (0,°1) and use linearized system to classify the fixed

points.

(b) Sketch the phase portrait of the full system and re-classify the fixed points.

Problem 8: (10 points)

Consider the system describing a particle mass moving in a double-well potential V (x) =
°1

2
x2 + 1

4
x4

, i.e.,

ẍ =°dV
dx

= x °x3
.

(a) Show that the energy E(x, ẋ) = ẋ2

2
+V (x) is a conserved quantity for this system, i.e.

E(x, ẋ) is constant along trajectories.

(b) Sketch the x, ẋ-phase portrait. Classify the fixed points of the system (0,0) and (±1,0).

4



Graduate Group in Applied Mathematics

University of California, Davis

Preliminary Exam

September 20, 2011

Instructions:

• This exam has 3 pages (8 problems) and is closed book.

• The first 6 problems cover Analysis and the last 2 problems cover ODEs.

• All problems are worth 10 points.

• Explain your answers clearly. Unclear answers will not receive credit. State results and theo-
rems you are using.

• Use separate sheets for the solution of each problem.

Problem 1: (10 points)

Let (X ,d) be a metric space and let (xn) be a sequence in X . For the purpose of this

problem adopt the following definition: x 2 X is called a cluster point of (xn) iff there

exists a subsequence (xnk )k∏0 such that limk xnk = x.

(a) Let (an)n∏0 be a sequence of distinct points in X . Construct a sequence (xn)n∏0 in X
such that for all k = 0,1,2, . . ., ak is a cluster point of (xn).

(b) Can a sequence (xn) in a metric space have an uncountable number of cluster points?

Prove your answer. (If you answer yes, give an example with proof. If you answer

no, prove that such a sequence cannot exists). You may use without proof that Q is

countable and R is uncountable.

Problem 2: (10 points)

Let X be a real Banach space and X §
its Banach space dual. For any bounded linear

operator T 2B(X ), and ¡ 2 X §
, define the functional T §¡ by

T §¡(x) =¡(T x), for all x 2 X .

(a) Prove that T §
is a bounded operator on X §

with kT §k ∑ kT k.

(b) Suppose 0 6= ∏ 2 R is an eigenvalue of T . Prove that ∏ is also an eigenvalue of T §
.

(Hint 1: first prove the result for ∏= 1. Hint 2: For ¡ 2 X §
, consider the sequence of

Cesàro means √N = N°1
PN

n=1
¡n , of the sequence ¡n defined by ¡n(x) =¡(T n x).)
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Problem 3: (10 points)

Let H be a complex Hilbert space and denote by B(H ) the Banach space of all bounded

linear transformations (operators) of H considered with the operator norm.

(a) What does it mean for A 2 B(H ) to be compact? Give a definition of compactness

of an operator A in terms of properties of the image of bounded sets, e.g., the set

{Ax | x 2H ,kxk ∑ 1}.

(b) Suppose H is separable and let {en}n∏0 be an orthonormal basis of H . For n ∏ 0, let

Pn denote the orthogonal projection onto the subspace spanned by e0, . . . ,en . Prove

that A 2B(H ) is compact iff the sequence (Pn A)n∏0 converges to A in norm.

Problem 4: (10 points)

Let ≠ Ω Rn
be open, bounded, and smooth. Suppose that { f j }

1
j=1

Ω L2
(≠) and f j * g1

weakly in L2
(≠) and that f j (x) ! g2(x) a.e. in≠. Show that g1 = g2 a.e. (Hint: Use Egoroff’s

theorem which states that given our assumptions, for all ≤> 0, there exists E Ω≠ such that

∏(E) < ≤ and f j ! g2 uniformly on E c
.)

Problem 5: (10 points)

Let u(x) = (1+| log x|)°1
. Prove that u 2W 1,1

(0,1), u(0) = 0, but
u
x
62 L1

(0,1).

Problem 6: (10 points)

Let H =
Ω

f 2 L2
(0,2º) :

Z
2º

0

f (x)dx = 0

æ
. We define the operator§ as follows:

(§ f )(x) =
Zx

0

f (y)dy .

(a) Prove that§ : H ! L2
(0,2º) is continuous.

(b) Use the Fourier series to show that the following estimate holds:

k§ f kH 1

0
(0,2º)

∑Ck f kL2(0,2º) ,

where C denotes a constant which depends only on the domain (0,2º). (Recall that

kuk2

H 1

0
(0,2º)

=
Z

2º

0

ØØØØ
du
dx

(x)

ØØØØ
2

dx.)
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Problem 7: (10 points)

Consider the system

ẋ =µx + y + tan x ẏ = x ° y .

(a) Show that a bifurcation occurs at the origin (x, y) = (0,0), and determine the critical

value µ=µc at which the bifurcation occurs.

(b) Determine the type of bifurcation that occurs at µ = µc . Do this (i) analytically and

(ii) graphically (sketch the appropriate phase portraits for µ slightly less than; equal

to; and slightly greater than µc ).

Problem 8: (10 points)

Consider the differential equation

ẍ +x °x3 = 0 ,

with the initial condition x(0) = ≤, ẋ(0) = 0, where ≤ø 1. Use “two-timing” and perturba-

tion theory to approximate the frequency of oscillation to order ≤2
.

(a) Make a change of variables so that the differential equation is in the form z̈ + z +
≤h(z, ż) = 0, i.e., in a form where ≤ appears naturally in the equation as a perturbation

parameter.

(b) Rewrite the equation assuming two times scales, a fast time ø = t and a slow one

T = ≤ø, and the solution form z(t ,≤) = z0(ø,T )+≤z1(ø,T )+O(≤2
).

(c) Show that the order 0 (i.e., O(1)) solution takes the form

z0(ø,T ) = r (T )cos(ø+¡(T )) .

(d) Use the order 1 (i.e., O(≤)) equation to determine the frequency of oscillation to

order ≤2
. (Hint: The order 1 (i.e., O(≤)) equation contains resonant terms, which

would cause the solution to grow without bound as t !1. A solution that remains

bounded for large ø is obtained by setting the coefficients of the resonant terms to

zero. This yields equations that can be used to find the order ≤2
correction for the

frequency of the oscillation. Note: Be sure to look for “hidden” resonance terms. It

may be helpful to use the trig identity cos
3
(µ) = 3

4
cos(µ)+ 1

4
cos(3µ).)
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Graduate Group in Applied Mathematics
University of California, Davis

Preliminary Exam
(3 January 2003)

This exam has 2 numbered pages and is closed book. The Analysis portion of

this exam is Problems 1-6. The ODE portion is Problems 7-9.

Problem 1. Let f(x) be a real-valued function from L2
(R1

) and

↵ =

Z +1

�1
f(x) exp(�x2

)dx, � =

Z +1

�1
f(x)x exp(�x2

)dx.

a) (5 points) Prove that ↵2 < ⇡
R +1
�1 f 2

(x)dx.

b) (5 points) Prove that ↵2
+ 2�2 < ⇡

R +1
�1 f 2

(x)dx.

Problem 2. Calculate the Fourier coe�cients of the functions f(x) and g(x) in L2
(0, 2⇡)

where

a) (5 points) f(x) = cos
6
(x),

b) (5 points) g(x) = x� ⇡.

Problem 3.

a) (5 points) Prove or disprove that Rn
equipped with the usual Euclidean norm is separable

(i.e. it has a countable dense subset). Does the answer depend on the particular choice of

norm in Rn
?

b) (5 points) Prove that l1(Z) with the usual sup norm is not a separable space.

Problem 4. (10 points) Find all non-negative integers n and m such that xn dm�(x)
dxm is iden-

tically zero, where �(x) is the delta function.

Problem 5. Consider the Hilbert space L2
[�1, 1].

a) (5 points) Find the orthogonal complement of the space of all polynomials. Hint: Use

the Stone-Weierstrass theorem.

b) (5 points) Find the orthogonal complement of the space of polynomials in x2.
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Problem 6. (15 points) Consider the space of all polynomials on [0, 1] vanishing at the

origin with the sup norm. Prove that the space is not complete and find its completion.

Problem 7. Consider the 2-d system

x0 = x, y0 = �y + x2.

a) (5 points) Show that the system has a saddle point at (0,0) and its stable manifold is the

y-axis.

b) (5 points) Let (x, y) be a point on the unstable manifold and close to (0,0). Write the

y = u(x) and assume

u(x) =

X

k�1

ckx
k.

Determine the coe�cients ck (and thus u(x)) by substituting the expression into the equa-

tions.

c) (5 points) Check that your analytical result produces a curve with the same shape as the

stable manifold shown in the figure.

Problem 8. (10 points) Show that x0 = y, y0 = �x� x3
has a fixed point at the origin that

is a center (i.e. the Jacobian has purely imaginary eigenvalues). Are the trajectories in a

small neighborhood of the origin closed (i.e. periodic orbits)? Prove your answer.

Problem 9. (10 points) Sketch an argument for the existence of a periodic orbit for the

system

x00 + x + ✏(x2 � 1)x0 = 0

with a small positive parameter ✏.
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Graduate Group in Applied Mathematics
University of California, Davis

Preliminary Exam
(24 September 2003)

This exam has 3 numbered pages and is closed book. Please provide complete
arguments. State or cite by name any major theorems you use. The Analysis

portion of this exam is Problems 1-6. The ODE portion is Problems 7 & 8.

Problem 1. Recall the definition of the Gaussian distribution with variance �
2

> 0:

p�2(x) =
1p

2⇡�2
exp(� x

2

2�2
), x 2 R.

For f 2 L
1
(R) \ C0(R), define

(Tf)(x) =

p
2

Z +1

�1
p1/2(y)f(

p
2(x� y)) dy.

a) Prove that p1 is a fixed point of T .

b) Prove that for all c > 0, there is exactly one fixed point of T in L
1
(R) \ C0(R), say f ,

such that kfkL1 = c.

c) Let g 2 L
1
(R)\C0(R) be a non-negative function. Show that the sequence T

n
g converges

in L
1
(R) as n !1, and find its limit.

Problem 2. Let (tn)n�1 be a sequence of non-negative real numbers such that
P

n�1 t
3/2
n = 1.

Let (an) be a sequence of complex numbers satisfying

X

n�1

|an|3 < +1. (1)

Define fn 2 C([0, 1]), by

fn(x) =

nX

m=1

tmam sin(m⇡x)

Prove that the set

A = {fn | n � 1}

is precompact in C([0, 1]) with the supremum norm.
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Problem 3.

a) Let X
�1

be the distributional limit, as ✏ ! 0, of the sequence of functions

F✏(x) =

⇢
1
x , |x| > ✏

0, |x| < ✏

Show that X
�1

is the distributional derivative of the function f(x) = log |x|.
b) Show that the distributional limit, as ✏ ! 0, of the following sequence

f✏(x) =
1

x� i✏
, ✏ > 0

is X
�1

+ ⇡i�.

Problem 4. Let h > 0, and consider the following di↵erential-di↵erence initial-value prob-

lem, where u(x, t) and f(x) are 2⇡-periodic functions of x:

ut(x, t) =
u(x + h, t)� 2u(x, t) + u(x� h, t)

h2
,

u(x, 0) = f(x).

a) (10 points) Use Fourier series to solve for u(x, t) when f(x) is square-integrable.

b) (5 points) How does the smoothness of u(·, t) for t > 0 compare with the smoothness of

f(·)?
c) (5 points) Discuss briefly what happens to your solution in the limit h! 0.

Problem 5.

a) (5 points) Define “orthogonal projection on a Hilbert space”.

b) (10 points) Suppose that P and Q are orthogonal projections with ranges M and N ,

respectively. If PQ = QP , prove that R = P + Q� PQ is an orthogonal projection. What

is its range?

Problem 6.

a) (5 points) Define strong and weak convergence in a Hilbert space.

b) (5 points) Suppose that (xn)
1
n=1 is an orthogonal sequence in a Hilbert space, meaning

that xn is orthogonal to xm for n 6= m. Prove that the following statements are equivalent:

(i)

1X

n=1

xn converges strongly;

(ii)

1X

n=1

xn converges weakly;

2



(iii)

1X

n=1

kxnk2
<1.

c) (5 points) Give an example to show that if the sequence (xn)
1
n=1 is not orthogonal, thenP1

n=1 xn may converge weakly but not strongly.

Problem 7. Consider the system

q̇ = 4p
3 � 4pq

ṗ = 2p
2 � 3q

2

a) Show that the function H(q, p) = p
4 � 2p

2
q + q

3
is a conserved quantity for this system.

b) Compute the linearization of the system at the fixed point

(q
⇤
, p
⇤
) =

 
2

3
,

r
2

3

!

What type of fixed point is this? Sketch the behavior of the full system in a small neighbor-

hood of the fixed point.

Problem 8. Consider the one-dimensional system

ẋ = x +
rx

1 + x2

a) Compute the location of all fixed points as a function of r 2 R.

b) Plot the phase portrait when r = �2.

c) Plot a bifurcation diagram for the system. At what values of x and r does the bifurcation

occur? What type of bifurcation is it?

d) Describe what would happen to the system’s solution if it starts at x = 1/2 and r = �2,

and then r is very slowly increased? Assume that the system dynamics are much faster than

the change in r.
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Graduate Group in Applied Mathematics
University of California, Davis

Preliminary Exam
(25 September 2002)

This exam has 3 pages (9 problems) and is closed book.

Problem 1. (10 points) Prove that R1
with each of the metrics

(i) ⇢(x, y) = | arctan(x)� arctan(y)|
(ii) ⇢(x, y) = | exp(x)� exp(y)|
is incomplete and find its completion in each case.

Problem 2. (10 points) Let {ck}+1
k=�1 be the Fourier coe�cients of an inte-

grable function f 2 L1
(T 1

) on a unit circle. Find the Fourier coe�cients of

the Steklov function

fh(x) =
1

2h

Z x+h

x�h

f(y)dy.

What can be said about their behavior as h! 0?

Problem 3. (5 points) Prove or disprove that C[0, 1] with the usual sup

norm is a Hilbert space.

Problem 4. (10 points) Consider a sequence of functions fn(x) =
1

n10+1 ⇥
exp(�nx2

) in the Schwartz space S(R1
). Prove or disprove that it converges

to zero (in the Schwartz space topology) as n!1.
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Problem 5. (10 points) Let � be an eigenvalue of the Fourier transform on

R1
.

(i) Prove that the absolute value of � is one.

(ii) Prove that �4
= 1.

Problem 6. (10 points) Consider a convolution with f(x) =
sin(⇡x)

⇡x as a

linear operator on L2
(R1

). Prove that it is a self-adjoint operator and find

its norm.

Problem 7. (10 points) Let {ek}1k=1 be a natural orthonormal basis in l2(Z1
+).

Define a sequence of linear operators in l2(Z1
+) by the formula

Anek = �(n, k)e1, k = 1, 2, . . . , n = 1, 2, . . . ,

where �(n, k) is the Kronecker symbol (i.e. it is equal to one when n = k
and it is equal to zero otherwise). Prove that

(i) kAnk = 1.

(ii) An strongly converges to zero as n ! 1 (i.e. for any vector x one has

Anx! 0.)

Problem 8. For each of the equations

(i) x0 = rx� 4x3, (ii) x0 = r2 � x2

answer the following questions.

a) (5 points) Determine the bifurcation point of r and sketch the di↵erent

types of vector field, including the fixed point(s), for r smaller than, equal

to and bigger than the bifurcation point.

b) (5 points) Sketch the bifurcation diagram (i.e. the fixed point(s) versus

r) and indicate the stability of the fixed point(s) on the diagram.

2



Problem 9. Consider the equation

x00 + µ(x2 � 1)x0 + x = 0

and answer the following questions.

a) (5 points) Reduce the second order equation to a system of 1-st order

equations by introducing a new variable.

b) (5 points) For the equilibrium point x = 0, x0 = 0 find a Lyapunov

function (i.e. a function which is 0 at the equilibrium but otherwise strictly

positive or negative in a neighborhood of the equilibrium and changes its

value monotonically along any trajectory in that neighborhood).

c) (5 points) Determine the stability of the equilibrium point (your answer

should depend on µ). At what value of µ does the equilibrium change its

stability?

d) (5 points) What is the range of µ for which the system has a stable limit

cycle?
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